File size: 2,052 Bytes
d3e0996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f343b0
 
 
319d3d6
 
 
d3e0996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319d3d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import streamlit as st
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image

# Load pre-trained models and tokenizer
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")

# Check device and move model to the appropriate device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Set generation parameters
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}

# Define the prediction function
def predict_caption(image):
    if image.mode != "RGB":
        image = image.convert(mode="RGB")

    # Resize image to a fixed size (ViT typically requires 224x224 or 384x384)
    image = image.resize((384, 384))  # Resize to 384x384 for ViT

    # Process image with padding enabled to handle batched tensor conversion
    pixel_values = feature_extractor(images=[image], return_tensors="pt", padding=True).pixel_values.to(device)

    # Generate caption
    output_ids = model.generate(pixel_values, **gen_kwargs)
    preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
    
    # Return the caption text
    return preds[0].strip()

# Main function for Streamlit app
def main():
    st.title("Image Caption Generator")
    st.write("Upload an image, and the model will describe what it sees.")

    # Upload image
    uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

    if uploaded_file is not None:
        # Load and display the uploaded image
        image = Image.open(uploaded_file)
        st.image(image, caption='Uploaded Image', use_column_width=True)

        # Generate and display caption
        caption = predict_caption(image)
        st.write("Caption:", caption)

# Run the application
if __name__ == "__main__":
    main()