Spaces:
Sleeping
Sleeping
File size: 35,503 Bytes
4eeb369 01c7a6f 4eeb369 01c7a6f 76bfb86 01c7a6f 76bfb86 01c7a6f 76bfb86 01c7a6f 76bfb86 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 a5abdd6 01c7a6f 4eeb369 a5abdd6 01c7a6f a5abdd6 01c7a6f a5abdd6 01c7a6f a5abdd6 4eeb369 b64f67c 4eeb369 01c7a6f 4eeb369 d10f43f 4eeb369 d10f43f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f d10f43f a5abdd6 4eeb369 b64f67c 4eeb369 9b12e87 d10f43f 9b12e87 d10f43f 9b12e87 d10f43f 01c7a6f b64f67c 4eeb369 d10f43f 01c7a6f 4eeb369 d10f43f 4eeb369 d10f43f 9b12e87 d10f43f 9b12e87 d10f43f 01c7a6f 76bfb86 01c7a6f a91ffe3 01c7a6f a91ffe3 01c7a6f a91ffe3 d10f43f a91ffe3 01c7a6f a91ffe3 01c7a6f a91ffe3 01c7a6f a91ffe3 01c7a6f a91ffe3 d10f43f a91ffe3 7d77471 a91ffe3 7d77471 a91ffe3 01c7a6f a91ffe3 01c7a6f a91ffe3 01c7a6f d10f43f a91ffe3 01c7a6f d10f43f 01c7a6f d10f43f a91ffe3 d10f43f a91ffe3 d10f43f 01c7a6f 4d71bc4 01c7a6f c724be2 01c7a6f c724be2 01c7a6f c724be2 01c7a6f c724be2 4d71bc4 c724be2 4d71bc4 c724be2 4d71bc4 c724be2 4d71bc4 c724be2 4d71bc4 c724be2 01c7a6f c724be2 4d71bc4 c724be2 4d71bc4 c724be2 4d71bc4 c724be2 01c7a6f c724be2 01c7a6f c724be2 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 01c7a6f 4eeb369 7d77471 4eeb369 7d77471 4eeb369 7d77471 4eeb369 7d77471 4eeb369 7d77471 4eeb369 7d77471 4eeb369 7d77471 4eeb369 7d77471 8dba140 7d77471 8dba140 7d77471 8dba140 7d77471 8dba140 7d77471 8dba140 7d77471 8dba140 7d77471 8dba140 7d77471 4eeb369 d10f43f 4eeb369 7d77471 4eeb369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
import gradio as gr
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
from transformers import AutoProcessor, AutoModelForVision2Seq, AutoModelForCausalLM, AutoTokenizer
import torch
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import textwrap
import os
import gc
import re
import psutil
from datetime import datetime
import spaces
from kokoro import KPipeline
import soundfile as sf
def clear_memory():
"""Helper function to clear both CUDA and system memory, safe for Spaces environment"""
gc.collect()
# Only perform CUDA operations if we're in a GPU task context
if hasattr(spaces, "current_task") and spaces.current_task and torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
process = psutil.Process(os.getpid())
if hasattr(process, 'memory_info'):
process.memory_info().rss
gc.collect(generation=0)
gc.collect(generation=1)
gc.collect(generation=2)
# Only log GPU stats if we're in a GPU task context
if hasattr(spaces, "current_task") and spaces.current_task and torch.cuda.is_available():
print(f"GPU Memory allocated: {torch.cuda.memory_allocated()/1024**2:.2f} MB")
print(f"GPU Memory cached: {torch.cuda.memory_reserved()/1024**2:.2f} MB")
print(f"CPU RAM used: {process.memory_info().rss/1024**2:.2f} MB")
# Initialize models at startup - only the lightweight ones
print("Loading models...")
# Load SmolVLM for image analysis
processor_vlm = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct")
model_vlm = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceTB/SmolVLM-500M-Instruct",
torch_dtype=torch.bfloat16
).to("cuda")
# Load SmolLM2 for story and prompt generation
checkpoint = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
tokenizer_lm = AutoTokenizer.from_pretrained(checkpoint)
model_lm = AutoModelForCausalLM.from_pretrained(checkpoint).to("cuda")
# Initialize Kokoro TTS pipeline
pipeline = KPipeline(lang_code='a') # 'a' for American English
def load_sd_model():
"""Load Stable Diffusion model only when needed"""
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
pipe.enable_attention_slicing()
return pipe
@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_image():
"""Generate a random landscape image."""
clear_memory()
pipe = load_sd_model()
default_prompt = "a beautiful, professional landscape photograph"
default_negative_prompt = "blurry, bad quality, distorted, deformed"
default_steps = 30
default_guidance = 7.5
default_seed = torch.randint(0, 2**32 - 1, (1,)).item()
generator = torch.Generator("cuda").manual_seed(default_seed)
try:
image = pipe(
prompt=default_prompt,
negative_prompt=default_negative_prompt,
num_inference_steps=default_steps,
guidance_scale=default_guidance,
generator=generator,
).images[0]
del pipe
clear_memory()
return image
except Exception as e:
print(f"Error generating image: {e}")
if 'pipe' in locals():
del pipe
clear_memory()
return None
@torch.inference_mode()
@spaces.GPU(duration=30)
def analyze_image(image):
if image is None:
return "Please generate an image first."
clear_memory()
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Describe this image and Be brief but descriptive."}
]
}
]
try:
prompt = processor_vlm.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor_vlm(
text=prompt,
images=[image],
return_tensors="pt"
).to('cuda')
outputs = model_vlm.generate(
input_ids=inputs.input_ids,
pixel_values=inputs.pixel_values,
attention_mask=inputs.attention_mask,
num_return_sequences=1,
no_repeat_ngram_size=2,
max_new_tokens=500,
min_new_tokens=10
)
description = processor_vlm.decode(outputs[0], skip_special_tokens=True)
description = re.sub(r".*?Assistant:\s*", "", description, flags=re.DOTALL).strip()
# Split into sentences and take only the first three
sentences = re.split(r'(?<=[.!?])\s+', description)
description = ' '.join(sentences[:3])
clear_memory()
return description
except Exception as e:
print(f"Error analyzing image: {e}")
clear_memory()
return "Error analyzing image. Please try again."
@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_story(image_description):
clear_memory()
story_prompt = f"""Write a short children's story (one chapter, about 500 words) based on this scene: {image_description}
Requirements:
1. Main character: An English bulldog named Champ
2. Include these values: confidence, teamwork, caring, and hope
3. Theme: "We are stronger together than as individuals"
4. Keep it simple and engaging for young children
5. End with a simple moral lesson"""
try:
messages = [{"role": "user", "content": story_prompt}]
input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False)
inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda")
outputs = model_lm.generate(
inputs,
max_new_tokens=750,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.2
)
story = tokenizer_lm.decode(outputs[0])
story = clean_story_output(story)
clear_memory()
return story
except Exception as e:
print(f"Error generating story: {e}")
clear_memory()
return "Error generating story. Please try again."
@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_image_prompts(story_text):
clear_memory()
paragraphs = split_into_paragraphs(story_text)
all_prompts = []
prompt_instruction = '''Here is a story paragraph: {paragraph}
Start your response with "Watercolor bulldog" and describe what Champ is doing in this scene. Add where it takes place and one mood detail. Keep it short.'''
try:
for i, paragraph in enumerate(paragraphs, 1):
messages = [{"role": "user", "content": prompt_instruction.format(paragraph=paragraph)}]
input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False)
inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda")
outputs = model_lm.generate(
inputs,
max_new_tokens=30,
temperature=0.5,
top_p=0.9,
do_sample=True,
repetition_penalty=1.2
)
prompt = process_generated_prompt(tokenizer_lm.decode(outputs[0]), paragraph)
section = f"Paragraph {i}:\n{paragraph}\n\nScenery Prompt {i}:\n{prompt}\n\n{'='*50}"
all_prompts.append(section)
clear_memory()
return '\n'.join(all_prompts)
except Exception as e:
print(f"Error generating prompts: {e}")
clear_memory()
return "Error generating prompts. Please try again."
@torch.inference_mode()
@spaces.GPU(duration=60)
def generate_story_image(prompt, seed=-1):
clear_memory()
pipe = load_sd_model()
try:
pipe.load_lora_weights("Prof-Hunt/lora-bulldog")
generator = torch.Generator("cuda")
if seed != -1:
generator.manual_seed(seed)
else:
generator.manual_seed(torch.randint(0, 2**32 - 1, (1,)).item())
enhanced_prompt = f"{prompt}, watercolor style, children's book illustration, soft colors"
image = pipe(
prompt=enhanced_prompt,
negative_prompt="deformed, ugly, blurry, bad art, poor quality, distorted",
num_inference_steps=50,
guidance_scale=15,
generator=generator
).images[0]
pipe.unload_lora_weights()
del pipe
clear_memory()
return image
except Exception as e:
print(f"Error generating image: {e}")
if 'pipe' in locals():
pipe.unload_lora_weights()
del pipe
clear_memory()
return None
@torch.inference_mode()
@spaces.GPU(duration=180)
def generate_all_scenes(prompts_text):
clear_memory()
generated_images = []
formatted_prompts = []
progress_messages = []
total_scenes = len([s for s in prompts_text.split('='*50) if s.strip()])
def update_progress():
"""Create a progress message showing completed/total scenes"""
completed = len(generated_images)
message = f"Generated {completed}/{total_scenes} scenes\n\n"
if progress_messages:
message += "\n".join(progress_messages[-3:]) # Show last 3 status messages
return message
sections = prompts_text.split('='*50)
for section_num, section in enumerate(sections, 1):
if not section.strip():
continue
scene_prompt = None
for line in section.split('\n'):
if 'Scenery Prompt' in line:
scene_num = line.split('Scenery Prompt')[1].split(':')[0].strip()
next_line_index = section.split('\n').index(line) + 1
if next_line_index < len(section.split('\n')):
scene_prompt = section.split('\n')[next_line_index].strip()
formatted_prompts.append(f"Scene {scene_num}: {scene_prompt}")
break
if scene_prompt:
try:
clear_memory()
status_msg = f"π¨ Creating scene {section_num}: '{scene_prompt[:50]}...'"
progress_messages.append(status_msg)
# Yield progress update
yield generated_images, "\n\n".join(formatted_prompts), update_progress()
image = generate_story_image(scene_prompt)
if image is not None:
# Convert PIL Image to numpy array with explicit mode conversion
pil_image = image if isinstance(image, Image.Image) else Image.fromarray(image)
pil_image = pil_image.convert('RGB') # Ensure RGB mode
img_array = np.array(pil_image)
# Verify array shape and type
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
generated_images.append(img_array)
progress_messages.append(f"β
Successfully completed scene {section_num}")
else:
progress_messages.append(f"β Error: Invalid image format for scene {section_num}")
else:
progress_messages.append(f"β Failed to generate scene {section_num}")
clear_memory()
except Exception as e:
error_msg = f"β Error generating scene {section_num}: {str(e)}"
progress_messages.append(error_msg)
clear_memory()
continue
# Yield progress update after each scene
yield generated_images, "\n\n".join(formatted_prompts), update_progress()
# Final status update
if not generated_images:
progress_messages.append("β No images were successfully generated")
else:
progress_messages.append(f"β
Successfully completed all {len(generated_images)} scenes!")
# Final yield
yield generated_images, "\n\n".join(formatted_prompts), update_progress()
@spaces.GPU(duration=60)
def add_text_to_scenes(gallery_images, prompts_text):
"""Add text overlays to all scenes"""
print(f"Received gallery_images type: {type(gallery_images)}")
print(f"Number of images in gallery: {len(gallery_images) if isinstance(gallery_images, list) else 0}")
if not isinstance(gallery_images, list):
print("Gallery images must be a list")
return [], []
clear_memory()
# Process text sections
sections = prompts_text.split('='*50)
overlaid_images = []
output_files = []
# Create temporary directory for saving files
temp_dir = "temp_book_pages"
os.makedirs(temp_dir, exist_ok=True)
for i, (img_data, section) in enumerate(zip(gallery_images, sections)):
if not section.strip():
continue
print(f"\nProcessing image {i+1}:")
print(f"Image data type: {type(img_data)}")
try:
# Handle tuple from Gradio gallery
if isinstance(img_data, tuple):
filepath = img_data[0] if isinstance(img_data[0], str) else None
print(f"Found filepath: {filepath}")
if filepath and os.path.exists(filepath):
print(f"Loading image from: {filepath}")
image = Image.open(filepath).convert('RGB')
else:
print(f"Invalid filepath: {filepath}")
continue
else:
print(f"Unexpected image data type: {type(img_data)}")
continue
# Extract paragraph text
lines = [line.strip() for line in section.split('\n') if line.strip()]
paragraph = None
for j, line in enumerate(lines):
if line.startswith('Paragraph'):
if j + 1 < len(lines):
paragraph = lines[j + 1]
print(f"Found paragraph text for image {i+1}")
break
if paragraph and image:
# Add text overlay
overlaid_img = overlay_text_on_image(image, paragraph)
if overlaid_img is not None:
# Convert to numpy array for gallery display
overlaid_array = np.array(overlaid_img)
overlaid_images.append(overlaid_array)
# Save file for download
output_path = os.path.join(temp_dir, f"panel_{i+1}.png")
overlaid_img.save(output_path)
output_files.append(output_path)
print(f"Successfully processed image {i+1}")
else:
print(f"Failed to overlay text on image {i+1}")
except Exception as e:
print(f"Error processing image {i+1}: {str(e)}")
import traceback
print(traceback.format_exc())
continue
if not overlaid_images:
print("No images were successfully processed")
else:
print(f"Successfully processed {len(overlaid_images)} images")
clear_memory()
return overlaid_images, output_files
def overlay_text_on_image(image, text):
"""Add black text with white outline for better visibility."""
if image is None:
return None
try:
# Ensure we're working with RGB mode
img = image.convert('RGB')
draw = ImageDraw.Draw(img)
# Calculate font size based on image dimensions
font_size = int(img.width * 0.025)
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size)
except:
print("Using default font as DejaVuSans-Bold.ttf not found")
font = ImageFont.load_default()
# Calculate text positioning
y_position = int(img.height * 0.005)
x_margin = int(img.width * 0.005)
available_width = img.width - (2 * x_margin)
# Wrap text to fit image width
wrapped_text = textwrap.fill(text, width=int(available_width / (font_size * 0.6)))
# Add white outline to text for better readability
outline_color = (255, 255, 255)
text_color = (0, 0, 0)
offsets = [-2, -1, 1, 2]
# Draw text outline
for dx in offsets:
for dy in offsets:
draw.multiline_text(
(x_margin + dx, y_position + dy),
wrapped_text,
font=font,
fill=outline_color
)
# Draw main text
draw.multiline_text(
(x_margin, y_position),
wrapped_text,
font=font,
fill=text_color
)
return img
except Exception as e:
print(f"Error in overlay_text_on_image: {e}")
return None
def generate_combined_audio_from_story(story_text, voice='af_heart', speed=1):
"""Generate audio for the story with improved error handling and debugging"""
clear_memory()
if not story_text:
print("No story text provided")
return None
print(f"Generating audio for story of length: {len(story_text)}")
# Clean up text and split into manageable chunks
paragraphs = [p.strip() for p in story_text.split('\n\n') if p.strip()]
if not paragraphs:
print("No valid paragraphs found in story")
return None
print(f"Processing {len(paragraphs)} paragraphs")
combined_audio = []
try:
for i, paragraph in enumerate(paragraphs):
if not paragraph.strip():
continue
print(f"Processing paragraph {i+1}/{len(paragraphs)}")
print(f"Paragraph length: {len(paragraph)}")
print(f"Paragraph text: {paragraph[:100]}...") # Print first 100 chars
try:
# Generate audio for each sentence separately
sentences = [s.strip() for s in paragraph.split('.') if s.strip()]
print(f"Split into {len(sentences)} sentences")
for j, sentence in enumerate(sentences):
print(f"Processing sentence {j+1}/{len(sentences)}")
print(f"Sentence length: {len(sentence)}")
# Add more robust error handling around the generator
try:
generator = pipeline(
sentence + '.', # Add period back
voice=voice,
speed=speed,
split_pattern=r'\n+'
)
# Add type checking and validation for generator output
if generator is None:
print(f"Warning: Generator returned None for sentence: {sentence[:50]}...")
continue
# Process generator output with additional error handling
for batch_idx, metadata, audio in generator:
print(f"Processing batch {batch_idx}, audio length: {len(audio) if audio is not None else 0}")
if audio is not None and len(audio) > 0:
# Validate audio data
if isinstance(audio, (list, np.ndarray)):
combined_audio.extend(audio)
else:
print(f"Warning: Invalid audio type: {type(audio)}")
else:
print(f"Warning: Empty audio generated for sentence: {sentence[:50]}...")
# Add a small pause between sentences
combined_audio.extend([0] * 1000) # 1000 samples of silence
except Exception as e:
print(f"Error processing sentence {j+1}: {str(e)}")
import traceback
print(traceback.format_exc())
continue
# Add a longer pause between paragraphs
combined_audio.extend([0] * 2000) # 2000 samples of silence
except Exception as e:
print(f"Error processing paragraph {i+1}: {str(e)}")
import traceback
print(traceback.format_exc())
continue
if not combined_audio:
print("No audio was generated")
return None
# Convert combined audio to NumPy array and normalize
combined_audio = np.array(combined_audio)
if len(combined_audio) > 0:
# Print audio statistics
print(f"Final audio length: {len(combined_audio)}")
print(f"Audio min/max values: {np.min(combined_audio)}/{np.max(combined_audio)}")
# Normalize audio to prevent clipping
max_val = np.max(np.abs(combined_audio))
if max_val > 0:
combined_audio = combined_audio * 0.9 / max_val
print("Audio normalized successfully")
# Save audio with error handling
try:
filename = "combined_story.wav"
sf.write(filename, combined_audio, 24000)
print(f"Successfully saved audio to {filename}")
return filename
except Exception as e:
print(f"Error saving audio file: {str(e)}")
return None
else:
print("Error: Combined audio array is empty")
return None
except Exception as e:
print(f"Error generating audio: {str(e)}")
import traceback
print(traceback.format_exc())
clear_memory()
return None
finally:
clear_memory()
# Helper functions
def clean_story_output(story):
"""Clean up the generated story text."""
story = story.replace("<|im_end|>", "")
story_start = story.find("Once upon")
if story_start == -1:
possible_starts = ["One day", "In a", "There was", "Champ"]
for marker in possible_starts:
story_start = story.find(marker)
if story_start != -1:
break
if story_start != -1:
story = story[story_start:]
lines = story.split('\n')
cleaned_lines = []
for line in lines:
line = line.strip()
if line and not any(skip in line.lower() for skip in ['requirement', 'include these values', 'theme:', 'keep it simple', 'end with', 'write a']):
if not line.startswith(('1.', '2.', '3.', '4.', '5.')):
cleaned_lines.append(line)
return '\n\n'.join(cleaned_lines).strip()
def split_into_paragraphs(text):
"""Split text into paragraphs."""
paragraphs = []
current_paragraph = []
for line in text.split('\n'):
line = line.strip()
if not line:
if current_paragraph:
paragraphs.append(' '.join(current_paragraph))
current_paragraph = []
else:
current_paragraph.append(line)
if current_paragraph:
paragraphs.append(' '.join(current_paragraph))
return [p for p in paragraphs if not any(skip in p.lower()
for skip in ['requirement', 'include these values', 'theme:',
'keep it simple', 'end with', 'write a'])]
def process_generated_prompt(prompt, paragraph):
"""Process and clean up generated image prompts."""
prompt = prompt.replace("<|im_start|>", "").replace("<|im_end|>", "")
prompt = prompt.replace("assistant", "").replace("system", "").replace("user", "")
cleaned_lines = [line.strip() for line in prompt.split('\n')
if line.strip().lower().startswith("watercolor bulldog")]
if cleaned_lines:
prompt = cleaned_lines[0]
else:
setting = "quiet town" if "quiet town" in paragraph.lower() else "park"
mood = "hopeful" if "wished" in paragraph.lower() else "peaceful"
prompt = f"Watercolor bulldog watching friends play in {setting}, {mood} atmosphere."
if not prompt.endswith('.'):
prompt = prompt + '.'
return prompt
def create_interface():
# Define CSS for custom styling
css = """
/* Global styles */
.gradio-container {
background-color: #EBF8FF !important;
}
/* Custom button styling */
.custom-button {
background-color: #3B82F6 !important;
color: white !important;
border: none !important;
border-radius: 8px !important;
padding: 10px 20px !important;
margin: 10px 0 !important;
min-width: 200px !important;
}
.custom-button:hover {
background-color: #2563EB !important;
}
/* Section styling */
.section-content {
background-color: white !important;
border-radius: 12px !important;
padding: 20px !important;
margin: 10px 0 !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
}
/* AI Lesson box styling */
.ai-lesson {
background-color: #FEE2E2 !important;
border-radius: 8px !important;
padding: 15px !important;
margin: 10px 0 !important;
border: 1px solid #FCA5A5 !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("""
# π¨ Tech Tales: AI Children's Story Creator
Welcome to this educational AI story creation tool! This app demonstrates how multiple AI models
work together to create an illustrated children's story. Each step includes a brief AI lesson
to help you understand the technology being used.
Let's create something magical! β¨
""")
# Step 1: Generate Landscape
with gr.Row(elem_classes="section-content"):
with gr.Column(elem_classes="ai-lesson"):
gr.Markdown("""
### Step 1: Setting the Scene with AI πΌοΈ
π€ **AI Lesson: Text-to-Image Generation**
We're using Stable Diffusion, a powerful AI model that turns text into images.
How it works:
- Starts with random noise and gradually refines it into an image
- Uses millions of image-text pairs from its training
- Combines understanding of both language and visual elements
- Takes about 50 steps to create each image
Real-world applications: Book illustrations, concept art, product visualization
""")
with gr.Column():
generate_btn = gr.Button("1. Generate Random Landscape", elem_classes="custom-button")
image_output = gr.Image(label="Your AI-Generated Landscape", type="pil", interactive=False)
# Step 2: Analyze Scene
with gr.Row(elem_classes="section-content"):
with gr.Column(elem_classes="ai-lesson"):
gr.Markdown("""
### Step 2: Teaching AI to See ποΈ
π€ **AI Lesson: Vision-Language Models (VLM)**
Our VLM acts like an AI art critic, understanding and describing images.
How it works:
- Processes images through neural networks
- Identifies objects, scenes, colors, and relationships
- Translates visual features into natural language
- Uses attention mechanisms to focus on important details
Real-world applications: Image search, accessibility tools, medical imaging
""")
with gr.Column():
analyze_btn = gr.Button("2. Get Brief Description", elem_classes="custom-button")
analysis_output = gr.Textbox(label="What the AI Sees", lines=3)
# Step 3: Create Story
with gr.Row(elem_classes="section-content"):
with gr.Column(elem_classes="ai-lesson"):
gr.Markdown("""
### Step 3: Crafting the Narrative π
π€ **AI Lesson: Large Language Models**
Meet our AI storyteller! It uses a Large Language Model (LLM) to write creative stories.
How it works:
- Processes the scene description as context
- Uses pattern recognition from millions of stories
- Maintains narrative consistency and character development
- Adapts its writing style for children
Real-world applications: Content creation, creative writing, education
""")
with gr.Column():
story_btn = gr.Button("3. Create Children's Story", elem_classes="custom-button")
story_output = gr.Textbox(label="Your AI-Generated Story", lines=10)
# Step 4: Generate Prompts
with gr.Row(elem_classes="section-content"):
with gr.Column(elem_classes="ai-lesson"):
gr.Markdown("""
### Step 4: Planning the Illustrations π―
π€ **AI Lesson: Natural Language Processing**
The AI breaks down the story into key scenes and creates optimal image prompts.
How it works:
- Analyzes story structure and pacing
- Identifies key narrative moments
- Generates specialized prompts for each scene
- Ensures visual consistency across illustrations
Real-world applications: Content planning, storyboarding, scene composition
""")
with gr.Column():
prompts_btn = gr.Button("4. Generate Scene Prompts", elem_classes="custom-button")
prompts_output = gr.Textbox(label="Scene Descriptions", lines=20)
# Step 5: Generate Scenes
with gr.Row(elem_classes="section-content"):
with gr.Column(elem_classes="ai-lesson"):
gr.Markdown("""
### Step 5: Bringing Scenes to Life π¨
π€ **AI Lesson: Specialized Image Generation**
Using a fine-tuned model to create consistent character illustrations.
How it works:
- Uses LoRA (Low-Rank Adaptation) for specialized training
- Maintains consistent character appearance
- Processes multiple scenes in parallel
- Balances creativity with prompt adherence
Real-world applications: Character design, animation, book illustration
""")
with gr.Column():
generate_scenes_btn = gr.Button("5. Generate Story Scenes", elem_classes="custom-button")
scene_progress = gr.Textbox(label="Generation Progress", lines=6, interactive=False)
gallery = gr.Gallery(label="Story Scenes", columns=2, height="auto", interactive=False)
scene_prompts_display = gr.Textbox(label="Scene Details", lines=8, interactive=False)
# Step 6: Add Text
with gr.Row(elem_classes="section-content"):
with gr.Column(elem_classes="ai-lesson"):
gr.Markdown("""
### Step 6: Creating Book Pages π
π€ **AI Lesson: Computer Vision & Layout**
Combining images and text requires sophisticated layout algorithms.
How it works:
- Analyzes image composition for text placement
- Adjusts font size and style for readability
- Creates visual hierarchy between elements
- Ensures consistent formatting across pages
Real-world applications: Desktop publishing, web design, digital books
""")
with gr.Column():
add_text_btn = gr.Button("6. Add Text to Scenes", elem_classes="custom-button")
final_gallery = gr.Gallery(label="Final Book Pages", columns=2, height="auto", interactive=False)
download_btn = gr.File(label="Download Your Story Book", file_count="multiple", interactive=False)
# Step 7: Audio Generation
with gr.Row(elem_classes="section-content"):
with gr.Column(elem_classes="ai-lesson"):
gr.Markdown("""
### Step 7: Adding Narration π§
π€ **AI Lesson: Text-to-Speech Synthesis**
Converting our story into natural-sounding speech.
How it works:
- Uses neural networks for voice synthesis
- Adds appropriate emotion and emphasis
- Controls pacing and pronunciation
- Maintains consistent voice throughout
Real-world applications: Audiobooks, accessibility tools, virtual assistants
""")
with gr.Column():
tts_btn = gr.Button("7. Read Story Aloud", elem_classes="custom-button")
audio_output = gr.Audio(label="Story Narration")
# Event handlers
generate_btn.click(fn=generate_image, outputs=image_output)
analyze_btn.click(fn=analyze_image, inputs=[image_output], outputs=analysis_output)
story_btn.click(fn=generate_story, inputs=[analysis_output], outputs=story_output)
prompts_btn.click(fn=generate_image_prompts, inputs=[story_output], outputs=prompts_output)
generate_scenes_btn.click(
fn=generate_all_scenes,
inputs=[prompts_output],
outputs=[gallery, scene_prompts_display, scene_progress]
)
add_text_btn.click(
fn=add_text_to_scenes,
inputs=[gallery, prompts_output],
outputs=[final_gallery, download_btn]
)
tts_btn.click(fn=generate_combined_audio_from_story, inputs=[story_output], outputs=audio_output)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch() |