import gradio as gr from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler from transformers import AutoProcessor, AutoModelForVision2Seq, AutoModelForCausalLM, AutoTokenizer import torch from PIL import Image, ImageDraw, ImageFont import numpy as np import textwrap import os import gc import re import psutil from datetime import datetime import spaces from kokoro import KPipeline import soundfile as sf def clear_memory(): """Helper function to clear both CUDA and system memory, safe for Spaces environment""" gc.collect() # Only perform CUDA operations if we're in a GPU task context if hasattr(spaces, "current_task") and spaces.current_task and torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.synchronize() process = psutil.Process(os.getpid()) if hasattr(process, 'memory_info'): process.memory_info().rss gc.collect(generation=0) gc.collect(generation=1) gc.collect(generation=2) # Only log GPU stats if we're in a GPU task context if hasattr(spaces, "current_task") and spaces.current_task and torch.cuda.is_available(): print(f"GPU Memory allocated: {torch.cuda.memory_allocated()/1024**2:.2f} MB") print(f"GPU Memory cached: {torch.cuda.memory_reserved()/1024**2:.2f} MB") print(f"CPU RAM used: {process.memory_info().rss/1024**2:.2f} MB") # Initialize models at startup - only the lightweight ones print("Loading models...") # Load SmolVLM for image analysis processor_vlm = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct") model_vlm = AutoModelForVision2Seq.from_pretrained( "HuggingFaceTB/SmolVLM-500M-Instruct", torch_dtype=torch.bfloat16 ).to("cuda") # Load SmolLM2 for story and prompt generation checkpoint = "HuggingFaceTB/SmolLM2-1.7B-Instruct" tokenizer_lm = AutoTokenizer.from_pretrained(checkpoint) model_lm = AutoModelForCausalLM.from_pretrained(checkpoint).to("cuda") # Initialize Kokoro TTS pipeline pipeline = KPipeline(lang_code='a') # 'a' for American English def load_sd_model(): """Load Stable Diffusion model only when needed""" pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, ) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") pipe.enable_attention_slicing() return pipe @torch.inference_mode() @spaces.GPU(duration=30) def generate_image(): """Generate a random landscape image.""" clear_memory() pipe = load_sd_model() default_prompt = "a beautiful, professional landscape photograph" default_negative_prompt = "blurry, bad quality, distorted, deformed" default_steps = 30 default_guidance = 7.5 default_seed = torch.randint(0, 2**32 - 1, (1,)).item() generator = torch.Generator("cuda").manual_seed(default_seed) try: image = pipe( prompt=default_prompt, negative_prompt=default_negative_prompt, num_inference_steps=default_steps, guidance_scale=default_guidance, generator=generator, ).images[0] del pipe clear_memory() return image except Exception as e: print(f"Error generating image: {e}") if 'pipe' in locals(): del pipe clear_memory() return None @torch.inference_mode() @spaces.GPU(duration=30) def analyze_image(image): if image is None: return "Please generate an image first." clear_memory() if isinstance(image, np.ndarray): image = Image.fromarray(image) messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "Describe this image and Be brief but descriptive."} ] } ] try: prompt = processor_vlm.apply_chat_template(messages, add_generation_prompt=True) inputs = processor_vlm( text=prompt, images=[image], return_tensors="pt" ).to('cuda') outputs = model_vlm.generate( input_ids=inputs.input_ids, pixel_values=inputs.pixel_values, attention_mask=inputs.attention_mask, num_return_sequences=1, no_repeat_ngram_size=2, max_new_tokens=500, min_new_tokens=10 ) description = processor_vlm.decode(outputs[0], skip_special_tokens=True) description = re.sub(r".*?Assistant:\s*", "", description, flags=re.DOTALL).strip() # Split into sentences and take only the first three sentences = re.split(r'(?<=[.!?])\s+', description) description = ' '.join(sentences[:3]) clear_memory() return description except Exception as e: print(f"Error analyzing image: {e}") clear_memory() return "Error analyzing image. Please try again." @torch.inference_mode() @spaces.GPU(duration=30) def generate_story(image_description): clear_memory() story_prompt = f"""Write a short children's story (one chapter, about 500 words) based on this scene: {image_description} Requirements: 1. Main character: An English bulldog named Champ 2. Include these values: confidence, teamwork, caring, and hope 3. Theme: "We are stronger together than as individuals" 4. Keep it simple and engaging for young children 5. End with a simple moral lesson""" try: messages = [{"role": "user", "content": story_prompt}] input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False) inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda") outputs = model_lm.generate( inputs, max_new_tokens=750, temperature=0.7, top_p=0.9, do_sample=True, repetition_penalty=1.2 ) story = tokenizer_lm.decode(outputs[0]) story = clean_story_output(story) clear_memory() return story except Exception as e: print(f"Error generating story: {e}") clear_memory() return "Error generating story. Please try again." @torch.inference_mode() @spaces.GPU(duration=30) def generate_image_prompts(story_text): clear_memory() paragraphs = split_into_paragraphs(story_text) all_prompts = [] prompt_instruction = '''Here is a story paragraph: {paragraph} Start your response with "Watercolor bulldog" and describe what Champ is doing in this scene. Add where it takes place and one mood detail. Keep it short.''' try: for i, paragraph in enumerate(paragraphs, 1): messages = [{"role": "user", "content": prompt_instruction.format(paragraph=paragraph)}] input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False) inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda") outputs = model_lm.generate( inputs, max_new_tokens=30, temperature=0.5, top_p=0.9, do_sample=True, repetition_penalty=1.2 ) prompt = process_generated_prompt(tokenizer_lm.decode(outputs[0]), paragraph) section = f"Paragraph {i}:\n{paragraph}\n\nScenery Prompt {i}:\n{prompt}\n\n{'='*50}" all_prompts.append(section) clear_memory() return '\n'.join(all_prompts) except Exception as e: print(f"Error generating prompts: {e}") clear_memory() return "Error generating prompts. Please try again." @torch.inference_mode() @spaces.GPU(duration=60) def generate_story_image(prompt, seed=-1): clear_memory() pipe = load_sd_model() try: pipe.load_lora_weights("Prof-Hunt/lora-bulldog") generator = torch.Generator("cuda") if seed != -1: generator.manual_seed(seed) else: generator.manual_seed(torch.randint(0, 2**32 - 1, (1,)).item()) enhanced_prompt = f"{prompt}, watercolor style, children's book illustration, soft colors" image = pipe( prompt=enhanced_prompt, negative_prompt="deformed, ugly, blurry, bad art, poor quality, distorted", num_inference_steps=50, guidance_scale=15, generator=generator ).images[0] pipe.unload_lora_weights() del pipe clear_memory() return image except Exception as e: print(f"Error generating image: {e}") if 'pipe' in locals(): pipe.unload_lora_weights() del pipe clear_memory() return None @torch.inference_mode() @spaces.GPU(duration=180) def generate_all_scenes(prompts_text): clear_memory() generated_images = [] formatted_prompts = [] progress_messages = [] total_scenes = len([s for s in prompts_text.split('='*50) if s.strip()]) def update_progress(): """Create a progress message showing completed/total scenes""" completed = len(generated_images) message = f"Generated {completed}/{total_scenes} scenes\n\n" if progress_messages: message += "\n".join(progress_messages[-3:]) # Show last 3 status messages return message sections = prompts_text.split('='*50) for section_num, section in enumerate(sections, 1): if not section.strip(): continue scene_prompt = None for line in section.split('\n'): if 'Scenery Prompt' in line: scene_num = line.split('Scenery Prompt')[1].split(':')[0].strip() next_line_index = section.split('\n').index(line) + 1 if next_line_index < len(section.split('\n')): scene_prompt = section.split('\n')[next_line_index].strip() formatted_prompts.append(f"Scene {scene_num}: {scene_prompt}") break if scene_prompt: try: clear_memory() status_msg = f"🎨 Creating scene {section_num}: '{scene_prompt[:50]}...'" progress_messages.append(status_msg) # Yield progress update yield generated_images, "\n\n".join(formatted_prompts), update_progress() image = generate_story_image(scene_prompt) if image is not None: # Convert PIL Image to numpy array with explicit mode conversion pil_image = image if isinstance(image, Image.Image) else Image.fromarray(image) pil_image = pil_image.convert('RGB') # Ensure RGB mode img_array = np.array(pil_image) # Verify array shape and type if len(img_array.shape) == 3 and img_array.shape[2] == 3: generated_images.append(img_array) progress_messages.append(f"✅ Successfully completed scene {section_num}") else: progress_messages.append(f"❌ Error: Invalid image format for scene {section_num}") else: progress_messages.append(f"❌ Failed to generate scene {section_num}") clear_memory() except Exception as e: error_msg = f"❌ Error generating scene {section_num}: {str(e)}" progress_messages.append(error_msg) clear_memory() continue # Yield progress update after each scene yield generated_images, "\n\n".join(formatted_prompts), update_progress() # Final status update if not generated_images: progress_messages.append("❌ No images were successfully generated") else: progress_messages.append(f"✅ Successfully completed all {len(generated_images)} scenes!") # Final yield yield generated_images, "\n\n".join(formatted_prompts), update_progress() @spaces.GPU(duration=60) def add_text_to_scenes(gallery_images, prompts_text): """Add text overlays to all scenes""" print(f"Received gallery_images type: {type(gallery_images)}") print(f"Number of images in gallery: {len(gallery_images) if isinstance(gallery_images, list) else 0}") if not isinstance(gallery_images, list): print("Gallery images must be a list") return [], [] clear_memory() # Process text sections sections = prompts_text.split('='*50) overlaid_images = [] output_files = [] # Create temporary directory for saving files temp_dir = "temp_book_pages" os.makedirs(temp_dir, exist_ok=True) for i, (img_data, section) in enumerate(zip(gallery_images, sections)): if not section.strip(): continue print(f"\nProcessing image {i+1}:") print(f"Image data type: {type(img_data)}") try: # Handle tuple from Gradio gallery if isinstance(img_data, tuple): filepath = img_data[0] if isinstance(img_data[0], str) else None print(f"Found filepath: {filepath}") if filepath and os.path.exists(filepath): print(f"Loading image from: {filepath}") image = Image.open(filepath).convert('RGB') else: print(f"Invalid filepath: {filepath}") continue else: print(f"Unexpected image data type: {type(img_data)}") continue # Extract paragraph text lines = [line.strip() for line in section.split('\n') if line.strip()] paragraph = None for j, line in enumerate(lines): if line.startswith('Paragraph'): if j + 1 < len(lines): paragraph = lines[j + 1] print(f"Found paragraph text for image {i+1}") break if paragraph and image: # Add text overlay overlaid_img = overlay_text_on_image(image, paragraph) if overlaid_img is not None: # Convert to numpy array for gallery display overlaid_array = np.array(overlaid_img) overlaid_images.append(overlaid_array) # Save file for download output_path = os.path.join(temp_dir, f"panel_{i+1}.png") overlaid_img.save(output_path) output_files.append(output_path) print(f"Successfully processed image {i+1}") else: print(f"Failed to overlay text on image {i+1}") except Exception as e: print(f"Error processing image {i+1}: {str(e)}") import traceback print(traceback.format_exc()) continue if not overlaid_images: print("No images were successfully processed") else: print(f"Successfully processed {len(overlaid_images)} images") clear_memory() return overlaid_images, output_files def overlay_text_on_image(image, text): """Add black text with white outline for better visibility.""" if image is None: return None try: # Ensure we're working with RGB mode img = image.convert('RGB') draw = ImageDraw.Draw(img) # Calculate font size based on image dimensions font_size = int(img.width * 0.025) try: font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size) except: print("Using default font as DejaVuSans-Bold.ttf not found") font = ImageFont.load_default() # Calculate text positioning y_position = int(img.height * 0.005) x_margin = int(img.width * 0.005) available_width = img.width - (2 * x_margin) # Wrap text to fit image width wrapped_text = textwrap.fill(text, width=int(available_width / (font_size * 0.6))) # Add white outline to text for better readability outline_color = (255, 255, 255) text_color = (0, 0, 0) offsets = [-2, -1, 1, 2] # Draw text outline for dx in offsets: for dy in offsets: draw.multiline_text( (x_margin + dx, y_position + dy), wrapped_text, font=font, fill=outline_color ) # Draw main text draw.multiline_text( (x_margin, y_position), wrapped_text, font=font, fill=text_color ) return img except Exception as e: print(f"Error in overlay_text_on_image: {e}") return None def generate_combined_audio_from_story(story_text, voice='af_heart', speed=1): """Generate audio for the story with improved error handling and debugging""" clear_memory() if not story_text: print("No story text provided") return None print(f"Generating audio for story of length: {len(story_text)}") # Clean up text and split into manageable chunks paragraphs = [p.strip() for p in story_text.split('\n\n') if p.strip()] if not paragraphs: print("No valid paragraphs found in story") return None print(f"Processing {len(paragraphs)} paragraphs") combined_audio = [] try: for i, paragraph in enumerate(paragraphs): if not paragraph.strip(): continue print(f"Processing paragraph {i+1}/{len(paragraphs)}") print(f"Paragraph length: {len(paragraph)}") print(f"Paragraph text: {paragraph[:100]}...") # Print first 100 chars try: # Generate audio for each sentence separately sentences = [s.strip() for s in paragraph.split('.') if s.strip()] print(f"Split into {len(sentences)} sentences") for j, sentence in enumerate(sentences): print(f"Processing sentence {j+1}/{len(sentences)}") print(f"Sentence length: {len(sentence)}") # Add more robust error handling around the generator try: generator = pipeline( sentence + '.', # Add period back voice=voice, speed=speed, split_pattern=r'\n+' ) # Add type checking and validation for generator output if generator is None: print(f"Warning: Generator returned None for sentence: {sentence[:50]}...") continue # Process generator output with additional error handling for batch_idx, metadata, audio in generator: print(f"Processing batch {batch_idx}, audio length: {len(audio) if audio is not None else 0}") if audio is not None and len(audio) > 0: # Validate audio data if isinstance(audio, (list, np.ndarray)): combined_audio.extend(audio) else: print(f"Warning: Invalid audio type: {type(audio)}") else: print(f"Warning: Empty audio generated for sentence: {sentence[:50]}...") # Add a small pause between sentences combined_audio.extend([0] * 1000) # 1000 samples of silence except Exception as e: print(f"Error processing sentence {j+1}: {str(e)}") import traceback print(traceback.format_exc()) continue # Add a longer pause between paragraphs combined_audio.extend([0] * 2000) # 2000 samples of silence except Exception as e: print(f"Error processing paragraph {i+1}: {str(e)}") import traceback print(traceback.format_exc()) continue if not combined_audio: print("No audio was generated") return None # Convert combined audio to NumPy array and normalize combined_audio = np.array(combined_audio) if len(combined_audio) > 0: # Print audio statistics print(f"Final audio length: {len(combined_audio)}") print(f"Audio min/max values: {np.min(combined_audio)}/{np.max(combined_audio)}") # Normalize audio to prevent clipping max_val = np.max(np.abs(combined_audio)) if max_val > 0: combined_audio = combined_audio * 0.9 / max_val print("Audio normalized successfully") # Save audio with error handling try: filename = "combined_story.wav" sf.write(filename, combined_audio, 24000) print(f"Successfully saved audio to {filename}") return filename except Exception as e: print(f"Error saving audio file: {str(e)}") return None else: print("Error: Combined audio array is empty") return None except Exception as e: print(f"Error generating audio: {str(e)}") import traceback print(traceback.format_exc()) clear_memory() return None finally: clear_memory() # Helper functions def clean_story_output(story): """Clean up the generated story text.""" story = story.replace("<|im_end|>", "") story_start = story.find("Once upon") if story_start == -1: possible_starts = ["One day", "In a", "There was", "Champ"] for marker in possible_starts: story_start = story.find(marker) if story_start != -1: break if story_start != -1: story = story[story_start:] lines = story.split('\n') cleaned_lines = [] for line in lines: line = line.strip() if line and not any(skip in line.lower() for skip in ['requirement', 'include these values', 'theme:', 'keep it simple', 'end with', 'write a']): if not line.startswith(('1.', '2.', '3.', '4.', '5.')): cleaned_lines.append(line) return '\n\n'.join(cleaned_lines).strip() def split_into_paragraphs(text): """Split text into paragraphs.""" paragraphs = [] current_paragraph = [] for line in text.split('\n'): line = line.strip() if not line: if current_paragraph: paragraphs.append(' '.join(current_paragraph)) current_paragraph = [] else: current_paragraph.append(line) if current_paragraph: paragraphs.append(' '.join(current_paragraph)) return [p for p in paragraphs if not any(skip in p.lower() for skip in ['requirement', 'include these values', 'theme:', 'keep it simple', 'end with', 'write a'])] def process_generated_prompt(prompt, paragraph): """Process and clean up generated image prompts.""" prompt = prompt.replace("<|im_start|>", "").replace("<|im_end|>", "") prompt = prompt.replace("assistant", "").replace("system", "").replace("user", "") cleaned_lines = [line.strip() for line in prompt.split('\n') if line.strip().lower().startswith("watercolor bulldog")] if cleaned_lines: prompt = cleaned_lines[0] else: setting = "quiet town" if "quiet town" in paragraph.lower() else "park" mood = "hopeful" if "wished" in paragraph.lower() else "peaceful" prompt = f"Watercolor bulldog watching friends play in {setting}, {mood} atmosphere." if not prompt.endswith('.'): prompt = prompt + '.' return prompt def create_interface(): # Define CSS for custom styling css = """ /* Global styles */ .gradio-container { background-color: #EBF8FF !important; } /* Custom button styling */ .custom-button { background-color: #3B82F6 !important; color: white !important; border: none !important; border-radius: 8px !important; padding: 10px 20px !important; margin: 10px 0 !important; min-width: 200px !important; } .custom-button:hover { background-color: #2563EB !important; } /* Section styling */ .section-content { background-color: white !important; border-radius: 12px !important; padding: 20px !important; margin: 10px 0 !important; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important; } /* AI Lesson box styling */ .ai-lesson { background-color: #FEE2E2 !important; border-radius: 8px !important; padding: 15px !important; margin: 10px 0 !important; border: 1px solid #FCA5A5 !important; } """ with gr.Blocks(css=css) as demo: gr.Markdown(""" # 🎨 Tech Tales: AI Children's Story Creator Welcome to this educational AI story creation tool! This app demonstrates how multiple AI models work together to create an illustrated children's story. Each step includes a brief AI lesson to help you understand the technology being used. Let's create something magical! ✨ """) # Step 1: Generate Landscape with gr.Row(elem_classes="section-content"): with gr.Column(elem_classes="ai-lesson"): gr.Markdown(""" ### Step 1: Setting the Scene with AI 🖼️ 🤖 **AI Lesson: Text-to-Image Generation** We're using Stable Diffusion, a powerful AI model that turns text into images. How it works: - Starts with random noise and gradually refines it into an image - Uses millions of image-text pairs from its training - Combines understanding of both language and visual elements - Takes about 50 steps to create each image Real-world applications: Book illustrations, concept art, product visualization """) with gr.Column(): generate_btn = gr.Button("1. Generate Random Landscape", elem_classes="custom-button") image_output = gr.Image(label="Your AI-Generated Landscape", type="pil", interactive=False) # Step 2: Analyze Scene with gr.Row(elem_classes="section-content"): with gr.Column(elem_classes="ai-lesson"): gr.Markdown(""" ### Step 2: Teaching AI to See 👁️ 🤖 **AI Lesson: Vision-Language Models (VLM)** Our VLM acts like an AI art critic, understanding and describing images. How it works: - Processes images through neural networks - Identifies objects, scenes, colors, and relationships - Translates visual features into natural language - Uses attention mechanisms to focus on important details Real-world applications: Image search, accessibility tools, medical imaging """) with gr.Column(): analyze_btn = gr.Button("2. Get Brief Description", elem_classes="custom-button") analysis_output = gr.Textbox(label="What the AI Sees", lines=3) # Step 3: Create Story with gr.Row(elem_classes="section-content"): with gr.Column(elem_classes="ai-lesson"): gr.Markdown(""" ### Step 3: Crafting the Narrative 📖 🤖 **AI Lesson: Large Language Models** Meet our AI storyteller! It uses a Large Language Model (LLM) to write creative stories. How it works: - Processes the scene description as context - Uses pattern recognition from millions of stories - Maintains narrative consistency and character development - Adapts its writing style for children Real-world applications: Content creation, creative writing, education """) with gr.Column(): story_btn = gr.Button("3. Create Children's Story", elem_classes="custom-button") story_output = gr.Textbox(label="Your AI-Generated Story", lines=10) # Step 4: Generate Prompts with gr.Row(elem_classes="section-content"): with gr.Column(elem_classes="ai-lesson"): gr.Markdown(""" ### Step 4: Planning the Illustrations 🎯 🤖 **AI Lesson: Natural Language Processing** The AI breaks down the story into key scenes and creates optimal image prompts. How it works: - Analyzes story structure and pacing - Identifies key narrative moments - Generates specialized prompts for each scene - Ensures visual consistency across illustrations Real-world applications: Content planning, storyboarding, scene composition """) with gr.Column(): prompts_btn = gr.Button("4. Generate Scene Prompts", elem_classes="custom-button") prompts_output = gr.Textbox(label="Scene Descriptions", lines=20) # Step 5: Generate Scenes with gr.Row(elem_classes="section-content"): with gr.Column(elem_classes="ai-lesson"): gr.Markdown(""" ### Step 5: Bringing Scenes to Life 🎨 🤖 **AI Lesson: Specialized Image Generation** Using a fine-tuned model to create consistent character illustrations. How it works: - Uses LoRA (Low-Rank Adaptation) for specialized training - Maintains consistent character appearance - Processes multiple scenes in parallel - Balances creativity with prompt adherence Real-world applications: Character design, animation, book illustration """) with gr.Column(): generate_scenes_btn = gr.Button("5. Generate Story Scenes", elem_classes="custom-button") scene_progress = gr.Textbox(label="Generation Progress", lines=6, interactive=False) gallery = gr.Gallery(label="Story Scenes", columns=2, height="auto", interactive=False) scene_prompts_display = gr.Textbox(label="Scene Details", lines=8, interactive=False) # Step 6: Add Text with gr.Row(elem_classes="section-content"): with gr.Column(elem_classes="ai-lesson"): gr.Markdown(""" ### Step 6: Creating Book Pages 📚 🤖 **AI Lesson: Computer Vision & Layout** Combining images and text requires sophisticated layout algorithms. How it works: - Analyzes image composition for text placement - Adjusts font size and style for readability - Creates visual hierarchy between elements - Ensures consistent formatting across pages Real-world applications: Desktop publishing, web design, digital books """) with gr.Column(): add_text_btn = gr.Button("6. Add Text to Scenes", elem_classes="custom-button") final_gallery = gr.Gallery(label="Final Book Pages", columns=2, height="auto", interactive=False) download_btn = gr.File(label="Download Your Story Book", file_count="multiple", interactive=False) # Step 7: Audio Generation with gr.Row(elem_classes="section-content"): with gr.Column(elem_classes="ai-lesson"): gr.Markdown(""" ### Step 7: Adding Narration 🎧 🤖 **AI Lesson: Text-to-Speech Synthesis** Converting our story into natural-sounding speech. How it works: - Uses neural networks for voice synthesis - Adds appropriate emotion and emphasis - Controls pacing and pronunciation - Maintains consistent voice throughout Real-world applications: Audiobooks, accessibility tools, virtual assistants """) with gr.Column(): tts_btn = gr.Button("7. Read Story Aloud", elem_classes="custom-button") audio_output = gr.Audio(label="Story Narration") # Event handlers generate_btn.click(fn=generate_image, outputs=image_output) analyze_btn.click(fn=analyze_image, inputs=[image_output], outputs=analysis_output) story_btn.click(fn=generate_story, inputs=[analysis_output], outputs=story_output) prompts_btn.click(fn=generate_image_prompts, inputs=[story_output], outputs=prompts_output) generate_scenes_btn.click( fn=generate_all_scenes, inputs=[prompts_output], outputs=[gallery, scene_prompts_display, scene_progress] ) add_text_btn.click( fn=add_text_to_scenes, inputs=[gallery, prompts_output], outputs=[final_gallery, download_btn] ) tts_btn.click(fn=generate_combined_audio_from_story, inputs=[story_output], outputs=audio_output) return demo if __name__ == "__main__": demo = create_interface() demo.launch()