Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,166 Bytes
50262ab ce8a201 7c6ede0 575a6d7 025dfc0 575a6d7 7c6ede0 575a6d7 f4154c5 7c6ede0 b0b6988 7c6ede0 575a6d7 ce8a201 7c6ede0 025dfc0 575a6d7 f4154c5 575a6d7 025dfc0 575a6d7 f4154c5 575a6d7 f4154c5 575a6d7 025dfc0 575a6d7 f4154c5 575a6d7 7e3fe0c 575a6d7 f4154c5 575a6d7 f4154c5 575a6d7 f4154c5 575a6d7 f4154c5 575a6d7 025dfc0 575a6d7 025dfc0 f4154c5 575a6d7 7e3fe0c 575a6d7 7e3fe0c 575a6d7 7e3fe0c 0e3aa4b 7e3fe0c 0e3aa4b 7e3fe0c 575a6d7 f4154c5 575a6d7 f4154c5 575a6d7 025dfc0 575a6d7 f4154c5 575a6d7 f4154c5 575a6d7 f4154c5 575a6d7 f4154c5 575a6d7 f4154c5 575a6d7 f4154c5 575a6d7 7e3fe0c 575a6d7 7e3fe0c 9d5c27d 7e3fe0c 575a6d7 7e3fe0c 575a6d7 7c6ede0 575a6d7 2099990 575a6d7 2099990 117bfeb 575a6d7 7c6ede0 575a6d7 7c6ede0 575a6d7 7c6ede0 575a6d7 025dfc0 575a6d7 f4154c5 575a6d7 7c6ede0 575a6d7 7c6ede0 575a6d7 025dfc0 f4154c5 575a6d7 7c6ede0 575a6d7 025dfc0 f4154c5 575a6d7 7c6ede0 575a6d7 7c6ede0 025dfc0 575a6d7 025dfc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
from nemo.collections.asr.models import ASRModel
import torch
import gradio as gr
import spaces
import gc
import shutil
from pathlib import Path
from pydub import AudioSegment
import numpy as np
import os
import gradio.themes as gr_themes
import csv
import datetime
device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_NAME="Quantamhash/Quantum_STT_V2.0"
model = ASRModel.from_pretrained(model_name=MODEL_NAME)
model.eval()
def start_session(request: gr.Request):
session_hash = request.session_hash
session_dir = Path(f'/tmp/{session_hash}')
session_dir.mkdir(parents=True, exist_ok=True)
print(f"Session with hash {session_hash} started.")
return session_dir.as_posix()
def end_session(request: gr.Request):
session_hash = request.session_hash
session_dir = Path(f'/tmp/{session_hash}')
if session_dir.exists():
shutil.rmtree(session_dir)
print(f"Session with hash {session_hash} ended.")
def get_audio_segment(audio_path, start_second, end_second):
if not audio_path or not Path(audio_path).exists():
print(f"Warning: Audio path '{audio_path}' not found or invalid for clipping.")
return None
try:
start_ms = int(start_second * 1000)
end_ms = int(end_second * 1000)
start_ms = max(0, start_ms)
if end_ms <= start_ms:
print(f"Warning: End time ({end_second}s) is not after start time ({start_second}s). Adjusting end time.")
end_ms = start_ms + 100
audio = AudioSegment.from_file(audio_path)
clipped_audio = audio[start_ms:end_ms]
samples = np.array(clipped_audio.get_array_of_samples())
if clipped_audio.channels == 2:
samples = samples.reshape((-1, 2)).mean(axis=1).astype(samples.dtype)
frame_rate = clipped_audio.frame_rate
if frame_rate <= 0:
print(f"Warning: Invalid frame rate ({frame_rate}) detected for clipped audio.")
frame_rate = audio.frame_rate
if samples.size == 0:
print(f"Warning: Clipped audio resulted in empty samples array ({start_second}s to {end_second}s).")
return None
return (frame_rate, samples)
except FileNotFoundError:
print(f"Error: Audio file not found at path: {audio_path}")
return None
except Exception as e:
print(f"Error clipping audio {audio_path} from {start_second}s to {end_second}s: {e}")
return None
def format_srt_time(seconds: float) -> str:
"""Converts seconds to SRT time format HH:MM:SS,mmm using datetime.timedelta"""
sanitized_total_seconds = max(0.0, seconds)
delta = datetime.timedelta(seconds=sanitized_total_seconds)
total_int_seconds = int(delta.total_seconds())
hours = total_int_seconds // 3600
remainder_seconds_after_hours = total_int_seconds % 3600
minutes = remainder_seconds_after_hours // 60
seconds_part = remainder_seconds_after_hours % 60
milliseconds = delta.microseconds // 1000
return f"{hours:02d}:{minutes:02d}:{seconds_part:02d},{milliseconds:03d}"
def generate_srt_content(segment_timestamps: list) -> str:
"""Generates SRT formatted string from segment timestamps."""
srt_content = []
for i, ts in enumerate(segment_timestamps):
start_time = format_srt_time(ts['start'])
end_time = format_srt_time(ts['end'])
text = ts['segment']
srt_content.append(str(i + 1))
srt_content.append(f"{start_time} --> {end_time}")
srt_content.append(text)
srt_content.append("")
return "\n".join(srt_content)
@spaces.GPU
def get_transcripts_and_raw_times(audio_path, session_dir):
if not audio_path:
gr.Error("No audio file path provided for transcription.", duration=None)
# Return an update to hide the buttons
return [], [], None, gr.DownloadButton(label="Download Transcript (CSV)", visible=False), gr.DownloadButton(label="Download Transcript (SRT)", visible=False)
vis_data = [["N/A", "N/A", "Processing failed"]]
raw_times_data = [[0.0, 0.0]]
processed_audio_path = None
csv_file_path = None
srt_file_path = None
original_path_name = Path(audio_path).name
audio_name = Path(audio_path).stem
# Initialize button states
csv_button_update = gr.DownloadButton(label="Download Transcript (CSV)", visible=False)
srt_button_update = gr.DownloadButton(label="Download Transcript (SRT)", visible=False)
try:
try:
gr.Info(f"Loading audio: {original_path_name}", duration=2)
audio = AudioSegment.from_file(audio_path)
duration_sec = audio.duration_seconds
except Exception as load_e:
gr.Error(f"Failed to load audio file {original_path_name}: {load_e}", duration=None)
return [["Error", "Error", "Load failed"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
resampled = False
mono = False
target_sr = 16000
if audio.frame_rate != target_sr:
try:
audio = audio.set_frame_rate(target_sr)
resampled = True
except Exception as resample_e:
gr.Error(f"Failed to resample audio: {resample_e}", duration=None)
return [["Error", "Error", "Resample failed"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
if audio.channels == 2:
try:
audio = audio.set_channels(1)
mono = True
except Exception as mono_e:
gr.Error(f"Failed to convert audio to mono: {mono_e}", duration=None)
return [["Error", "Error", "Mono conversion failed"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
elif audio.channels > 2:
gr.Error(f"Audio has {audio.channels} channels. Only mono (1) or stereo (2) supported.", duration=None)
return [["Error", "Error", f"{audio.channels}-channel audio not supported"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
if resampled or mono:
try:
processed_audio_path = Path(session_dir, f"{audio_name}_resampled.wav")
audio.export(processed_audio_path, format="wav")
transcribe_path = processed_audio_path.as_posix()
info_path_name = f"{original_path_name} (processed)"
except Exception as export_e:
gr.Error(f"Failed to export processed audio: {export_e}", duration=None)
if processed_audio_path and os.path.exists(processed_audio_path):
os.remove(processed_audio_path)
return [["Error", "Error", "Export failed"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
else:
transcribe_path = audio_path
info_path_name = original_path_name
# Flag to track if long audio settings were applied
long_audio_settings_applied = False
try:
model.to(device)
model.to(torch.float32)
gr.Info(f"Transcribing {info_path_name} on {device}...", duration=2)
# Check duration and apply specific settings for long audio
if duration_sec > 480 : # 8 minutes
try:
gr.Info("Audio longer than 8 minutes. Applying optimized settings for long transcription.", duration=3)
print("Applying long audio settings: Local Attention and Chunking.")
model.change_attention_model("rel_pos_local_attn", [256,256])
model.change_subsampling_conv_chunking_factor(1) # 1 = auto select
long_audio_settings_applied = True
except Exception as setting_e:
gr.Warning(f"Could not apply long audio settings: {setting_e}", duration=5)
print(f"Warning: Failed to apply long audio settings: {setting_e}")
# Proceed without long audio settings if applying them failed
model.to(torch.bfloat16)
output = model.transcribe([transcribe_path], timestamps=True)
if not output or not isinstance(output, list) or not output[0] or not hasattr(output[0], 'timestamp') or not output[0].timestamp or 'segment' not in output[0].timestamp:
gr.Error("Transcription failed or produced unexpected output format.", duration=None)
# Return an update to hide the buttons
return [["Error", "Error", "Transcription Format Issue"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
segment_timestamps = output[0].timestamp['segment']
csv_headers = ["Start (s)", "End (s)", "Segment"]
vis_data = [[f"{ts['start']:.2f}", f"{ts['end']:.2f}", ts['segment']] for ts in segment_timestamps]
raw_times_data = [[ts['start'], ts['end']] for ts in segment_timestamps]
# CSV file generation
try:
csv_file_path = Path(session_dir, f"transcription_{audio_name}.csv")
writer = csv.writer(open(csv_file_path, 'w'))
writer.writerow(csv_headers)
writer.writerows(vis_data)
print(f"CSV transcript saved to temporary file: {csv_file_path}")
csv_button_update = gr.DownloadButton(value=csv_file_path, visible=True, label="Download Transcript (CSV)")
except Exception as csv_e:
gr.Error(f"Failed to create transcript CSV file: {csv_e}", duration=None)
print(f"Error writing CSV: {csv_e}")
if segment_timestamps:
try:
srt_content = generate_srt_content(segment_timestamps)
srt_file_path = Path(session_dir, f"transcription_{audio_name}.srt")
with open(srt_file_path, 'w', encoding='utf-8') as f:
f.write(srt_content)
print(f"SRT transcript saved to temporary file: {srt_file_path}")
srt_button_update = gr.DownloadButton(value=srt_file_path, visible=True, label="Download Transcript (SRT)")
except Exception as srt_e:
gr.Warning(f"Failed to create transcript SRT file: {srt_e}", duration=5)
print(f"Error writing SRT: {srt_e}")
gr.Info("Transcription complete.", duration=2)
return vis_data, raw_times_data, audio_path, csv_button_update, srt_button_update
except torch.cuda.OutOfMemoryError as e:
error_msg = 'CUDA out of memory. Please try a shorter audio or reduce GPU load.'
print(f"CUDA OutOfMemoryError: {e}")
gr.Error(error_msg, duration=None)
return [["OOM", "OOM", error_msg]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
except FileNotFoundError:
error_msg = f"Audio file for transcription not found: {Path(transcribe_path).name}."
print(f"Error: Transcribe audio file not found at path: {transcribe_path}")
gr.Error(error_msg, duration=None)
return [["Error", "Error", "File not found for transcription"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
except Exception as e:
error_msg = f"Transcription failed: {e}"
print(f"Error during transcription processing: {e}")
gr.Error(error_msg, duration=None)
vis_data = [["Error", "Error", error_msg]]
raw_times_data = [[0.0, 0.0]]
return vis_data, raw_times_data, audio_path, csv_button_update, srt_button_update
finally:
# --- Model Cleanup ---
try:
# Revert settings if they were applied for long audio
if long_audio_settings_applied:
try:
print("Reverting long audio settings.")
model.change_attention_model("rel_pos")
model.change_subsampling_conv_chunking_factor(-1)
long_audio_settings_applied = False # Reset flag
except Exception as revert_e:
print(f"Warning: Failed to revert long audio settings: {revert_e}")
gr.Warning(f"Issue reverting model settings after long transcription: {revert_e}", duration=5)
# Original cleanup
if 'model' in locals() and hasattr(model, 'cpu'):
if device == 'cuda':
model.cpu()
gc.collect()
if device == 'cuda':
torch.cuda.empty_cache()
except Exception as cleanup_e:
print(f"Error during model cleanup: {cleanup_e}")
gr.Warning(f"Issue during model cleanup: {cleanup_e}", duration=5)
# --- End Model Cleanup ---
finally:
if processed_audio_path and os.path.exists(processed_audio_path):
try:
os.remove(processed_audio_path)
print(f"Temporary audio file {processed_audio_path} removed.")
except Exception as e:
print(f"Error removing temporary audio file {processed_audio_path}: {e}")
def play_segment(evt: gr.SelectData, raw_ts_list, current_audio_path):
if not isinstance(raw_ts_list, list):
print(f"Warning: raw_ts_list is not a list ({type(raw_ts_list)}). Cannot play segment.")
return gr.Audio(value=None, label="Selected Segment")
if not current_audio_path:
print("No audio path available to play segment from.")
return gr.Audio(value=None, label="Selected Segment")
selected_index = evt.index[0]
if selected_index < 0 or selected_index >= len(raw_ts_list):
print(f"Invalid index {selected_index} selected for list of length {len(raw_ts_list)}.")
return gr.Audio(value=None, label="Selected Segment")
if not isinstance(raw_ts_list[selected_index], (list, tuple)) or len(raw_ts_list[selected_index]) != 2:
print(f"Warning: Data at index {selected_index} is not in the expected format [start, end].")
return gr.Audio(value=None, label="Selected Segment")
start_time_s, end_time_s = raw_ts_list[selected_index]
print(f"Attempting to play segment: {current_audio_path} from {start_time_s:.2f}s to {end_time_s:.2f}s")
segment_data = get_audio_segment(current_audio_path, start_time_s, end_time_s)
if segment_data:
print("Segment data retrieved successfully.")
return gr.Audio(value=segment_data, autoplay=True, label=f"Segment: {start_time_s:.2f}s - {end_time_s:.2f}s", interactive=False)
else:
print("Failed to get audio segment data.")
return gr.Audio(value=None, label="Selected Segment")
article = (
"<p style='font-size: 1.1em;'>"
"This demo showcases <code><a href='https://huggingface.co/Quantamhash/Quantum_STT_V2.0'>Quantum_STT_V2.0</a></code>, a 600-million-parameter model designed for high-quality English speech recognition."
"</p>"
"<p><strong style='color: red; font-size: 1.2em;'>Key Features:</strong></p>"
"<ul style='font-size: 1.1em;'>"
" <li>Automatic punctuation and capitalization</li>"
" <li>Accurate word-level timestamps (click on a segment in the table below to play it!)</li>"
" <li>Efficiently transcribes long audio segments (<strong>updated to support upto 3 hours</strong>)"
" <li>Robust performance on spoken numbers, and song lyrics transcription </li>"
"</ul>"
"<p style='font-size: 1.1em;'>"
"This model is <strong>available for commercial and non-commercial use</strong>."
)
examples = [
["data/example-yt_saTD1u8PorI.mp3"],
]
# Define an NVIDIA-inspired theme
nvidia_theme = gr_themes.Default(
primary_hue=gr_themes.Color(
c50="#E6F1D9", # Lightest green
c100="#CEE3B3",
c200="#B5D58C",
c300="#9CC766",
c400="#84B940",
c500="#76B900", # NVIDIA Green
c600="#68A600",
c700="#5A9200",
c800="#4C7E00",
c900="#3E6A00", # Darkest green
c950="#2F5600"
),
neutral_hue="gray", # Use gray for neutral elements
font=[gr_themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
).set()
# Apply the custom theme
with gr.Blocks(theme=nvidia_theme) as demo:
model_display_name = MODEL_NAME.split('/')[-1] if '/' in MODEL_NAME else MODEL_NAME
gr.Markdown(f"<h1 style='text-align: center; margin: 0 auto;'>Speech Transcription with {model_display_name}</h1>")
gr.HTML(article)
current_audio_path_state = gr.State(None)
raw_timestamps_list_state = gr.State([])
session_dir = gr.State()
demo.load(start_session, outputs=[session_dir])
with gr.Tabs():
with gr.TabItem("Audio File"):
file_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio File")
gr.Examples(examples=examples, inputs=[file_input], label="Example Audio Files (Click to Load)")
file_transcribe_btn = gr.Button("Transcribe Uploaded File", variant="primary")
with gr.TabItem("Microphone"):
mic_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Audio")
mic_transcribe_btn = gr.Button("Transcribe Microphone Input", variant="primary")
gr.Markdown("---")
gr.Markdown("<p><strong style='color: #FF0000; font-size: 1.2em;'>Transcription Results (Click row to play segment)</strong></p>")
# Define the DownloadButton *before* the DataFrame
with gr.Row():
download_btn_csv = gr.DownloadButton(label="Download Transcript (CSV)", visible=False)
download_btn_srt = gr.DownloadButton(label="Download Transcript (SRT)", visible=False)
vis_timestamps_df = gr.DataFrame(
headers=["Start (s)", "End (s)", "Segment"],
datatype=["number", "number", "str"],
wrap=True,
label="Transcription Segments"
)
# selected_segment_player was defined after download_btn previously, keep it after df for layout
selected_segment_player = gr.Audio(label="Selected Segment", interactive=False)
mic_transcribe_btn.click(
fn=get_transcripts_and_raw_times,
inputs=[mic_input, session_dir],
outputs=[vis_timestamps_df, raw_timestamps_list_state, current_audio_path_state, download_btn_csv, download_btn_srt],
api_name="transcribe_mic"
)
file_transcribe_btn.click(
fn=get_transcripts_and_raw_times,
inputs=[file_input, session_dir],
outputs=[vis_timestamps_df, raw_timestamps_list_state, current_audio_path_state, download_btn_csv, download_btn_srt],
api_name="transcribe_file"
)
vis_timestamps_df.select(
fn=play_segment,
inputs=[raw_timestamps_list_state, current_audio_path_state],
outputs=[selected_segment_player],
)
demo.unload(end_session)
if __name__ == "__main__":
print("Launching Gradio Demo...")
demo.queue()
demo.launch() |