File size: 8,487 Bytes
9556fee
 
 
 
 
 
e4b5795
8c20d92
9556fee
 
 
 
 
 
15ee476
9556fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdb2192
9556fee
 
 
849aa7c
9556fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15ee476
1d41e1c
e5a4ca8
9556fee
e5a4ca8
9556fee
e5a4ca8
9556fee
 
 
 
 
 
 
15ee476
9556fee
 
15ee476
9556fee
 
 
 
8c20d92
9556fee
 
 
 
 
 
 
 
 
 
 
 
8c20d92
e5a4ca8
9556fee
 
8c20d92
9556fee
 
 
 
 
 
aeed9c1
9556fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e191f86
9556fee
 
 
e191f86
 
9556fee
 
db4c353
9556fee
 
e5a4ca8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import spaces
from kokoro import KModel, KPipeline
import gradio as gr
import os
import random
import torch

IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('Quantumhash/')
CUDA_AVAILABLE = torch.cuda.is_available()
if not IS_DUPLICATE:
    import kokoro
    import misaki
    print('DEBUG', kokoro.__version__, CUDA_AVAILABLE, misaki.__version__)

CHAR_LIMIT = None if IS_DUPLICATE else 50000
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'}
pipelines['a'].g2p.lexicon.golds['qhash'] = 'kˈOkəɹO'
pipelines['b'].g2p.lexicon.golds['qhash'] = 'kˈQkəɹQ'

@spaces.GPU(duration=30)
def forward_gpu(ps, ref_s, speed):
    return models[True](ps, ref_s, speed)

def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
    text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
    pipeline = pipelines[voice[0]]
    pack = pipeline.load_voice(voice)
    use_gpu = use_gpu and CUDA_AVAILABLE
    for _, ps, _ in pipeline(text, voice, speed):
        ref_s = pack[len(ps)-1]
        try:
            if use_gpu:
                audio = forward_gpu(ps, ref_s, speed)
            else:
                audio = models[False](ps, ref_s, speed)
        except gr.exceptions.Error as e:
            if use_gpu:
                gr.Warning(str(e))
                gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
                audio = models[False](ps, ref_s, speed)
            else:
                raise gr.Error(e)
        return (24000, audio.numpy()), ps
    return None, ''

# Arena API
def predict(text, voice='af_heart', speed=1):
    return generate_first(text, voice, speed, use_gpu=False)[0]

def tokenize_first(text, voice='af_heart'):
    pipeline = pipelines[voice[0]]
    for _, ps, _ in pipeline(text, voice):
        return ps
    return ''

def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
    text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
    pipeline = pipelines[voice[0]]
    pack = pipeline.load_voice(voice)
    use_gpu = use_gpu and CUDA_AVAILABLE
    first = True
    for _, ps, _ in pipeline(text, voice, speed):
        ref_s = pack[len(ps)-1]
        try:
            if use_gpu:
                audio = forward_gpu(ps, ref_s, speed)
            else:
                audio = models[False](ps, ref_s, speed)
        except gr.exceptions.Error as e:
            if use_gpu:
                gr.Warning(str(e))
                gr.Info('Switching to CPU')
                audio = models[False](ps, ref_s, speed)
            else:
                raise gr.Error(e)
        yield 24000, audio.numpy()
        if first:
            first = False
            yield 24000, torch.zeros(1).numpy()

with open('en.txt', 'r') as r:
    random_quotes = [line.strip() for line in r]

def get_random_quote():
    return random.choice(random_quotes)

def get_gatsby():
    with open('gatsby.md', 'r') as r:
        return r.read().strip()

def get_frankenstein():
    with open('frankenstein.md', 'r') as r:
        return r.read().strip()

CHOICES = {
'🇺🇸 🚺 Heart ❤️': 'af_heart',
'🇺🇸 🚺 Bella 🔥': 'af_bella',
'🇺🇸 🚺 Nicole 🎧': 'af_nicole',
'🇺🇸 🚺 Aoede': 'af_aoede',
'🇺🇸 🚺 Kore': 'af_kore',
'🇺🇸 🚺 Sarah': 'af_sarah',
'🇺🇸 🚺 Nova': 'af_nova',
'🇺🇸 🚺 Sky': 'af_sky',
'🇺🇸 🚺 Alloy': 'af_alloy',
'🇺🇸 🚺 Jessica': 'af_jessica',
'🇺🇸 🚺 River': 'af_river',
'🇺🇸 🚹 Michael': 'am_michael',
'🇺🇸 🚹 Fenrir': 'am_fenrir',
'🇺🇸 🚹 Puck': 'am_puck',
'🇺🇸 🚹 Echo': 'am_echo',
'🇺🇸 🚹 Eric': 'am_eric',
'🇺🇸 🚹 Liam': 'am_liam',
'🇺🇸 🚹 Onyx': 'am_onyx',
'🇺🇸 🚹 Santa': 'am_santa',
'🇺🇸 🚹 Adam': 'am_adam',
'🇬🇧 🚺 Emma': 'bf_emma',
'🇬🇧 🚺 Isabella': 'bf_isabella',
'🇬🇧 🚺 Alice': 'bf_alice',
'🇬🇧 🚺 Lily': 'bf_lily',
'🇬🇧 🚹 George': 'bm_george',
'🇬🇧 🚹 Fable': 'bm_fable',
'🇬🇧 🚹 Lewis': 'bm_lewis',
'🇬🇧 🚹 Daniel': 'bm_daniel',
}
for v in CHOICES.values():
    pipelines[v[0]].load_voice(v)

"""TOKEN_NOTE = '''
💡 Customize pronunciation with Markdown link syntax and /slashes/ like `[Qhash-TTS]`

💬 To adjust intonation, try punctuation `;:,.!?—…"()“”` or stress `ˈ` and `ˌ`

⬇️ Lower stress `[1 level](-1)` or `[2 levels](-2)`

⬆️ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words)
'''

with gr.Blocks() as generate_tab:
    out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
    generate_btn = gr.Button('Generate', variant='primary')
    with gr.Accordion('Output Tokens', open=True):
        out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 5010 context length.')
        tokenize_btn = gr.Button('Tokenize', variant='secondary')
        gr.Markdown(TOKEN_NOTE)
        predict_btn = gr.Button('Predict', variant='secondary', visible=False)"""

STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.']
if CHAR_LIMIT is not None:
    STREAM_NOTE.append(f'✂️ Each stream is capped at {CHAR_LIMIT} characters.')
    STREAM_NOTE.append('🚀 Want more characters? You can [use Qhash-TTS directly](https://huggingface.co/Quantumhash/Qhash-TTS) or duplicate this space:')
STREAM_NOTE = '\n\n'.join(STREAM_NOTE)

with gr.Blocks() as stream_tab:
    out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
    with gr.Row():
        stream_btn = gr.Button('Stream', variant='primary')
        stop_btn = gr.Button('Stop', variant='stop')
    with gr.Accordion('Note', open=True):
        gr.Markdown(STREAM_NOTE)
        gr.DuplicateButton()

BANNER_TEXT = '''
[***Qhash-TTS*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/Quantumhash/Qhash-TTS)

This demo only showcases English, but you can directly use the model to access other languages.
'''
API_OPEN = os.getenv('SPACE_ID') != 'Quantumhash/Qhash-TTS'
API_NAME = None if API_OPEN else False
with gr.Blocks() as app:
    with gr.Row():
        gr.Markdown(BANNER_TEXT, container=True)
    with gr.Row():
        with gr.Column():
            text = gr.Textbox(label='Input Text', info=f"Up to ~5000 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
            with gr.Row():
                voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
                use_gpu = gr.Dropdown(
                    [('ZeroGPU 🚀', True), ('CPU 🐌', False)],
                    value=CUDA_AVAILABLE,
                    label='Hardware',
                    info='GPU is usually faster, but has a usage quota',
                    interactive=CUDA_AVAILABLE
                )
            speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
            random_btn = gr.Button('🎲 Random Quote 💬', variant='secondary')
            with gr.Row():
                gatsby_btn = gr.Button('🥂 Gatsby 📕', variant='secondary')
                frankenstein_btn = gr.Button('💀 Frankenstein 📗', variant='secondary')
        with gr.Column():
            gr.TabbedInterface([stream_tab], ['Stream'])
    random_btn.click(fn=get_random_quote, inputs=[], outputs=[text], api_name=API_NAME)
    gatsby_btn.click(fn=get_gatsby, inputs=[], outputs=[text], api_name=API_NAME)
    frankenstein_btn.click(fn=get_frankenstein, inputs=[], outputs=[text], api_name=API_NAME)
    """generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
    tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)"""
    stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream], api_name=API_NAME)
    stop_btn.click(fn=None, cancels=stream_event)
    '''predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)'''

if __name__ == '__main__':
    app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)