Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
os.environ['CUDA_HOME'] = '/usr/local/cuda' | |
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin' | |
from datetime import datetime | |
import cv2 | |
import gradio as gr | |
import spaces | |
import numpy as np | |
import torch | |
from diffusers.image_processor import VaeImageProcessor | |
from huggingface_hub import snapshot_download | |
from PIL import Image | |
torch.jit.script = lambda f: f | |
from model.cloth_masker import AutoMasker, vis_mask | |
from model.pipeline import CatVTONPipeline, CatVTONPix2PixPipeline | |
from model.flux.pipeline_flux_tryon import FluxTryOnPipeline | |
from utils import init_weight_dtype, resize_and_crop, resize_and_padding | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--base_model_path", | |
type=str, | |
default="booksforcharlie/stable-diffusion-inpainting", | |
help=( | |
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub." | |
), | |
) | |
parser.add_argument( | |
"--p2p_base_model_path", | |
type=str, | |
default="timbrooks/instruct-pix2pix", | |
help=( | |
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub." | |
), | |
) | |
parser.add_argument( | |
"--resume_path", | |
type=str, | |
default="zhengchong/CatVTON", | |
help=( | |
"The Path to the checkpoint of trained tryon model." | |
), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="resource/demo/output", | |
help="The output directory where the model predictions will be written.", | |
) | |
parser.add_argument( | |
"--width", | |
type=int, | |
default=768, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--height", | |
type=int, | |
default=1024, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--repaint", | |
action="store_true", | |
help="Whether to repaint the result image with the original background." | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
default=True, | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default="bf16", | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
return args | |
def image_grid(imgs, rows, cols): | |
assert len(imgs) == rows * cols | |
w, h = imgs[0].size | |
grid = Image.new("RGB", size=(cols * w, rows * h)) | |
for i, img in enumerate(imgs): | |
grid.paste(img, box=(i % cols * w, i // cols * h)) | |
return grid | |
args = parse_args() | |
# Mask-based CatVTON | |
catvton_repo = "zhengchong/CatVTON" | |
repo_path = snapshot_download(repo_id=catvton_repo) | |
# Pipeline | |
pipeline = CatVTONPipeline( | |
base_ckpt=args.base_model_path, | |
attn_ckpt=repo_path, | |
attn_ckpt_version="mix", | |
weight_dtype=init_weight_dtype(args.mixed_precision), | |
use_tf32=args.allow_tf32, | |
device='cuda' | |
) | |
# AutoMasker | |
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True) | |
automasker = AutoMasker( | |
densepose_ckpt=os.path.join(repo_path, "DensePose"), | |
schp_ckpt=os.path.join(repo_path, "SCHP"), | |
device='cuda', | |
) | |
# Flux-based CatVTON | |
access_token = os.getenv("HUGGING_FACE_HUB_TOKEN") | |
flux_repo = "black-forest-labs/FLUX.1-Fill-dev" | |
pipeline_flux = FluxTryOnPipeline.from_pretrained(flux_repo, use_auth_token=access_token) | |
pipeline_flux.load_lora_weights( | |
os.path.join(repo_path, "flux-lora"), | |
weight_name='pytorch_lora_weights.safetensors' | |
) | |
pipeline_flux.to("cuda", init_weight_dtype(args.mixed_precision)) | |
def print_image_info(img): | |
# Basic attributes | |
info = { | |
"Filename": img.filename, | |
"Format": img.format, | |
"Mode": img.mode, | |
"Size": img.size, | |
"Width": img.width, | |
"Height": img.height, | |
"DPI": img.info.get('dpi', "N/A"), | |
"Is Animated": getattr(img, "is_animated", False), | |
"Frames": getattr(img, "n_frames", 1) | |
} | |
print("----- Image Information -----") | |
for key, value in info.items(): | |
print(f"{key}: {value}") | |
def extract_frames(video_path): | |
# Open the video file | |
cap = cv2.VideoCapture(video_path) | |
frames = [] | |
success, frame = cap.read() | |
while success: | |
# Convert frame from BGR (OpenCV default) to RGB | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
# Convert the numpy array (frame) to a PIL Image | |
pil_frame = Image.fromarray(frame_rgb) | |
frames.append(pil_frame) | |
success, frame = cap.read() | |
cap.release() | |
return frames | |
#process_video_frames | |
def process_video_frames( | |
video, | |
cloth_image, | |
cloth_type, | |
num_inference_steps, | |
guidance_scale, | |
seed, | |
show_type | |
): | |
""" | |
Process each frame of the video through the flux pipeline | |
Args: | |
video (str): Path to the input video file | |
cloth_image (str): Path to the cloth image | |
... (other parameters from original function) | |
Returns: | |
list: Processed frames | |
""" | |
# Extract frames from video | |
frames = extract_frames(video) | |
processed_frames = [] | |
print(f"processed_frames {len(processed_frames)}") | |
for person_image in frames: | |
result_image = proc_function_vidfl( | |
person_image, | |
cloth_image, | |
cloth_type, | |
num_inference_steps, | |
guidance_scale, | |
seed, | |
show_type | |
) | |
print_image_info(result_image) | |
yield result_image | |
processed_frames.append(result_image) | |
yield processed_frames | |
def proc_function_vidfl( | |
person_image, | |
cloth_image, | |
cloth_type, | |
num_inference_steps, | |
guidance_scale, | |
seed, | |
show_type | |
): | |
# Set random seed | |
generator = None | |
if seed != -1: | |
generator = torch.Generator(device='cuda').manual_seed(seed) | |
# Process input images | |
#person_image = Image.open(person_image).convert("RGB") | |
#cloth_image = Image.open(cloth_image).convert("RGB") | |
# Adjust image sizes | |
person_image = resize_and_crop(person_image, (args.width, args.height)) | |
cloth_image = resize_and_padding(cloth_image, (args.width, args.height)) | |
# Process mask | |
mask = automasker( | |
person_image, | |
cloth_type | |
)['mask'] | |
mask = mask_processor.blur(mask, blur_factor=9) | |
# Inference | |
result_image = pipeline_flux( | |
image=person_image, | |
condition_image=cloth_image, | |
mask_image=mask, | |
width=args.width, | |
height=args.height, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator | |
).images[0] | |
return result_image | |
def submit_function_flux( | |
person_image, | |
cloth_image, | |
cloth_type, | |
num_inference_steps, | |
guidance_scale, | |
seed, | |
show_type | |
): | |
# Process image editor input | |
person_image, mask = person_image["background"], person_image["layers"][0] | |
mask = Image.open(mask).convert("L") | |
if len(np.unique(np.array(mask))) == 1: | |
mask = None | |
else: | |
mask = np.array(mask) | |
mask[mask > 0] = 255 | |
mask = Image.fromarray(mask) | |
# Set random seed | |
generator = None | |
if seed != -1: | |
generator = torch.Generator(device='cuda').manual_seed(seed) | |
# Process input images | |
person_image = Image.open(person_image).convert("RGB") | |
cloth_image = Image.open(cloth_image).convert("RGB") | |
# Adjust image sizes | |
person_image = resize_and_crop(person_image, (args.width, args.height)) | |
cloth_image = resize_and_padding(cloth_image, (args.width, args.height)) | |
# Process mask | |
if mask is not None: | |
mask = resize_and_crop(mask, (args.width, args.height)) | |
else: | |
mask = automasker( | |
person_image, | |
cloth_type | |
)['mask'] | |
mask = mask_processor.blur(mask, blur_factor=9) | |
# Inference | |
result_image = pipeline_flux( | |
image=person_image, | |
condition_image=cloth_image, | |
mask_image=mask, | |
width=args.width, | |
height=args.height, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator | |
).images[0] | |
# Post-processing | |
masked_person = vis_mask(person_image, mask) | |
# Return result based on show type | |
if show_type == "result only": | |
return result_image | |
else: | |
width, height = person_image.size | |
if show_type == "input & result": | |
condition_width = width // 2 | |
conditions = image_grid([person_image, cloth_image], 2, 1) | |
else: | |
condition_width = width // 3 | |
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1) | |
conditions = conditions.resize((condition_width, height), Image.NEAREST) | |
new_result_image = Image.new("RGB", (width + condition_width + 5, height)) | |
new_result_image.paste(conditions, (0, 0)) | |
new_result_image.paste(result_image, (condition_width + 5, 0)) | |
return new_result_image, result_image | |
def person_example_fn(image_path): | |
return image_path | |
HEADER = """ | |
<h1 style="text-align: center;"> 🐈 CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models </h1> | |
<br> | |
· This demo and our weights are only for Non-commercial Use. <br> | |
· Thanks to <a href="https://huggingface.co/zero-gpu-explorers">ZeroGPU</a> for providing A100 for our <a href="https://huggingface.co/spaces/zhengchong/CatVTON">HuggingFace Space</a>. <br> | |
· SafetyChecker is set to filter NSFW content, but it may block normal results too. Please adjust the <span>`seed`</span> for normal outcomes.<br> | |
""" | |
def app_gradio(): | |
with gr.Blocks(title="CatVTON") as demo: | |
gr.Markdown(HEADER) | |
with gr.Tab("Mask-based & Flux.1 Fill Dev"): | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=350): | |
with gr.Row(): | |
image_path_flux = gr.Image( | |
type="filepath", | |
interactive=True, | |
visible=False, | |
) | |
person_image_flux = gr.ImageEditor( | |
interactive=True, label="Person Image", type="filepath" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=230): | |
cloth_image_flux = gr.Image( | |
interactive=True, label="Condition Image", type="filepath" | |
) | |
with gr.Column(scale=1, min_width=120): | |
gr.Markdown( | |
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>' | |
) | |
cloth_type = gr.Radio( | |
label="Try-On Cloth Type", | |
choices=["upper", "lower", "overall"], | |
value="upper", | |
) | |
submit_flux = gr.Button("Submit") | |
gr.Markdown( | |
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>' | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
num_inference_steps_flux = gr.Slider( | |
label="Inference Step", minimum=10, maximum=100, step=5, value=50 | |
) | |
# Guidence Scale | |
guidance_scale_flux = gr.Slider( | |
label="CFG Strenth", minimum=0.0, maximum=50, step=0.5, value=30 | |
) | |
# Random Seed | |
seed_flux = gr.Slider( | |
label="Seed", minimum=-1, maximum=10000, step=1, value=42 | |
) | |
show_type = gr.Radio( | |
label="Show Type", | |
choices=["result only", "input & result", "input & mask & result"], | |
value="input & mask & result", | |
) | |
with gr.Column(scale=2, min_width=500): | |
result_image_flux = gr.Image(interactive=False, label="Result") | |
with gr.Row(): | |
# Photo Examples | |
root_path = "resource/demo/example" | |
with gr.Column(): | |
gal_output = gr.Gallery(label="Processed Frames") | |
image_path_flux.change( | |
person_example_fn, inputs=image_path_flux, outputs=person_image_flux | |
) | |
submit_flux.click( | |
submit_function_flux, | |
[person_image_flux, cloth_image_flux, cloth_type, num_inference_steps_flux, guidance_scale_flux, | |
seed_flux, show_type], | |
result_image_flux,gal_output | |
) | |
with gr.Tab("Video Flux"): | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=350): | |
with gr.Row(): | |
image_path_vidflux = gr.Image( | |
type="filepath", | |
interactive=True, | |
visible=False, | |
) | |
person_image_vidflux = gr.Video( | |
) | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=230): | |
cloth_image_vidflux = gr.Image( | |
interactive=True, label="Condition Image", type="filepath" | |
) | |
with gr.Column(scale=1, min_width=120): | |
gr.Markdown( | |
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>' | |
) | |
cloth_type = gr.Radio( | |
label="Try-On Cloth Type", | |
choices=["upper", "lower", "overall"], | |
value="upper", | |
) | |
submit_flux = gr.Button("Submit") | |
gr.Markdown( | |
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>' | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
num_inference_steps_vidflux = gr.Slider( | |
label="Inference Step", minimum=10, maximum=100, step=5, value=50 | |
) | |
# Guidence Scale | |
guidance_scale_vidflux = gr.Slider( | |
label="CFG Strenth", minimum=0.0, maximum=50, step=0.5, value=30 | |
) | |
# Random Seed | |
seed_vidflux = gr.Slider( | |
label="Seed", minimum=-1, maximum=10000, step=1, value=42 | |
) | |
show_type = gr.Radio( | |
label="Show Type", | |
choices=["result only", "input & result", "input & mask & result"], | |
value="input & mask & result", | |
) | |
with gr.Column(scale=2, min_width=500): | |
result_image_vidflux = gr.Image(interactive=False, label="Result") | |
with gr.Row(): | |
# Photo Examples | |
root_path = "resource/demo/example" | |
with gr.Column(): | |
gal_output = gr.Gallery(label="Processed Frames") | |
image_path_vidflux.change( | |
person_example_fn, inputs=image_path_vidflux, outputs=person_image_vidflux | |
) | |
submit_flux.click( | |
process_video_frames, | |
[person_image_vidflux, cloth_image_vidflux, cloth_type, num_inference_steps_vidflux, guidance_scale_vidflux, | |
seed_vidflux, show_type], | |
result_image_vidflux,gal_output | |
) | |
demo.queue().launch(share=True, show_error=True) | |
if __name__ == "__main__": | |
app_gradio() | |