Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tempfile
|
3 |
+
import os
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
# Load the ASR model
|
7 |
+
@st.cache_resource
|
8 |
+
def load_model():
|
9 |
+
return pipeline("automatic-speech-recognition", model="ivrit-ai/whisper-large-v3-turbo")
|
10 |
+
|
11 |
+
model = load_model()
|
12 |
+
|
13 |
+
# Streamlit UI
|
14 |
+
st.title("Hebrew Speech-to-Text Transcription")
|
15 |
+
|
16 |
+
# Upload audio file
|
17 |
+
uploaded_file = st.file_uploader("Upload an audio file (WAV, MP3, OGG)", type=["wav", "mp3", "ogg"])
|
18 |
+
|
19 |
+
if uploaded_file is not None:
|
20 |
+
# Save the uploaded file to a temporary location
|
21 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
22 |
+
temp_audio.write(uploaded_file.read())
|
23 |
+
temp_audio_path = temp_audio.name
|
24 |
+
|
25 |
+
# Transcribe the audio
|
26 |
+
st.write("Transcribing...")
|
27 |
+
try:
|
28 |
+
result = model(temp_audio_path)
|
29 |
+
st.subheader("Transcription:")
|
30 |
+
st.write(result["text"])
|
31 |
+
except Exception as e:
|
32 |
+
st.error(f"Error: {str(e)}")
|
33 |
+
|
34 |
+
# Clean up the temporary file
|
35 |
+
os.remove(temp_audio_path)
|