from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS from langchain.document_loaders.csv_loader import CSVLoader vectordb_file_path = "faiss_index" instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large") loader = CSVLoader(file_path='Indianconstitution.csv',encoding='utf-8-sig') data = loader.load() vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings) vectordb.save_local(vectordb_file_path)