Spaces:
Runtime error
Runtime error
Commit
Β·
05833ed
1
Parent(s):
d796b5a
Create adapter.py
Browse files- lvdm/models/modules/adapter.py +105 -0
lvdm/models/modules/adapter.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from collections import OrderedDict
|
| 4 |
+
from lvdm.models.modules.util import (
|
| 5 |
+
zero_module,
|
| 6 |
+
conv_nd,
|
| 7 |
+
avg_pool_nd
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
class Downsample(nn.Module):
|
| 11 |
+
"""
|
| 12 |
+
A downsampling layer with an optional convolution.
|
| 13 |
+
:param channels: channels in the inputs and outputs.
|
| 14 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 15 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 16 |
+
downsampling occurs in the inner-two dimensions.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.channels = channels
|
| 22 |
+
self.out_channels = out_channels or channels
|
| 23 |
+
self.use_conv = use_conv
|
| 24 |
+
self.dims = dims
|
| 25 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
| 26 |
+
if use_conv:
|
| 27 |
+
self.op = conv_nd(
|
| 28 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
| 29 |
+
)
|
| 30 |
+
else:
|
| 31 |
+
assert self.channels == self.out_channels
|
| 32 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
| 33 |
+
|
| 34 |
+
def forward(self, x):
|
| 35 |
+
assert x.shape[1] == self.channels
|
| 36 |
+
return self.op(x)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class ResnetBlock(nn.Module):
|
| 40 |
+
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
|
| 41 |
+
super().__init__()
|
| 42 |
+
ps = ksize // 2
|
| 43 |
+
if in_c != out_c or sk == False:
|
| 44 |
+
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
| 45 |
+
else:
|
| 46 |
+
# print('n_in')
|
| 47 |
+
self.in_conv = None
|
| 48 |
+
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
|
| 49 |
+
self.act = nn.ReLU()
|
| 50 |
+
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
|
| 51 |
+
if sk == False:
|
| 52 |
+
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
| 53 |
+
else:
|
| 54 |
+
self.skep = None
|
| 55 |
+
|
| 56 |
+
self.down = down
|
| 57 |
+
if self.down == True:
|
| 58 |
+
self.down_opt = Downsample(in_c, use_conv=use_conv)
|
| 59 |
+
|
| 60 |
+
def forward(self, x):
|
| 61 |
+
if self.down == True:
|
| 62 |
+
x = self.down_opt(x)
|
| 63 |
+
if self.in_conv is not None: # edit
|
| 64 |
+
x = self.in_conv(x)
|
| 65 |
+
|
| 66 |
+
h = self.block1(x)
|
| 67 |
+
h = self.act(h)
|
| 68 |
+
h = self.block2(h)
|
| 69 |
+
if self.skep is not None:
|
| 70 |
+
return h + self.skep(x)
|
| 71 |
+
else:
|
| 72 |
+
return h + x
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class Adapter(nn.Module):
|
| 76 |
+
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
|
| 77 |
+
super(Adapter, self).__init__()
|
| 78 |
+
self.unshuffle = nn.PixelUnshuffle(8)
|
| 79 |
+
self.channels = channels
|
| 80 |
+
self.nums_rb = nums_rb
|
| 81 |
+
self.body = []
|
| 82 |
+
for i in range(len(channels)):
|
| 83 |
+
for j in range(nums_rb):
|
| 84 |
+
if (i != 0) and (j == 0):
|
| 85 |
+
self.body.append(
|
| 86 |
+
ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
|
| 87 |
+
else:
|
| 88 |
+
self.body.append(
|
| 89 |
+
ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
|
| 90 |
+
self.body = nn.ModuleList(self.body)
|
| 91 |
+
self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
|
| 92 |
+
|
| 93 |
+
def forward(self, x):
|
| 94 |
+
# unshuffle
|
| 95 |
+
x = self.unshuffle(x)
|
| 96 |
+
# extract features
|
| 97 |
+
features = []
|
| 98 |
+
x = self.conv_in(x)
|
| 99 |
+
for i in range(len(self.channels)):
|
| 100 |
+
for j in range(self.nums_rb):
|
| 101 |
+
idx = i * self.nums_rb + j
|
| 102 |
+
x = self.body[idx](x)
|
| 103 |
+
features.append(x)
|
| 104 |
+
|
| 105 |
+
return features
|