Spaces:
Runtime error
Runtime error
Commit
Β·
ba984b2
1
Parent(s):
e16c291
Upload 26 files
Browse files- extralibs/midas/__init__.py +0 -0
- extralibs/midas/api.py +171 -0
- extralibs/midas/midas/__init__.py +0 -0
- extralibs/midas/midas/base_model.py +16 -0
- extralibs/midas/midas/blocks.py +342 -0
- extralibs/midas/midas/dpt_depth.py +110 -0
- extralibs/midas/midas/midas_net.py +76 -0
- extralibs/midas/midas/midas_net_custom.py +128 -0
- extralibs/midas/midas/transforms.py +234 -0
- extralibs/midas/midas/vit.py +489 -0
- extralibs/midas/utils.py +189 -0
- lvdm/models/ddpm3d.py +53 -4
- lvdm/models/modules/lora.py +78 -1
- lvdm/models/modules/openaimodel3d.py +10 -2
- lvdm/samplers/ddim.py +6 -6
- lvdm/utils/saving_utils.py +2 -2
extralibs/midas/__init__.py
ADDED
|
File without changes
|
extralibs/midas/api.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# based on https://github.com/isl-org/MiDaS
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torchvision.transforms import Compose
|
| 7 |
+
|
| 8 |
+
from extralibs.midas.midas.dpt_depth import DPTDepthModel
|
| 9 |
+
from extralibs.midas.midas.midas_net import MidasNet
|
| 10 |
+
from extralibs.midas.midas.midas_net_custom import MidasNet_small
|
| 11 |
+
from extralibs.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
ISL_PATHS = {
|
| 15 |
+
"dpt_large": "midas_models/dpt_large-midas-2f21e586.pt",
|
| 16 |
+
"dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt",
|
| 17 |
+
"midas_v21": "",
|
| 18 |
+
"midas_v21_small": "",
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def disabled_train(self, mode=True):
|
| 23 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 24 |
+
does not change anymore."""
|
| 25 |
+
return self
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def load_midas_transform(model_type):
|
| 29 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
| 30 |
+
# load transform only
|
| 31 |
+
if model_type == "dpt_large": # DPT-Large
|
| 32 |
+
net_w, net_h = 384, 384
|
| 33 |
+
resize_mode = "minimal"
|
| 34 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 35 |
+
|
| 36 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
| 37 |
+
net_w, net_h = 384, 384
|
| 38 |
+
resize_mode = "minimal"
|
| 39 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 40 |
+
|
| 41 |
+
elif model_type == "midas_v21":
|
| 42 |
+
net_w, net_h = 384, 384
|
| 43 |
+
resize_mode = "upper_bound"
|
| 44 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 45 |
+
|
| 46 |
+
elif model_type == "midas_v21_small":
|
| 47 |
+
net_w, net_h = 256, 256
|
| 48 |
+
resize_mode = "upper_bound"
|
| 49 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 50 |
+
|
| 51 |
+
else:
|
| 52 |
+
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
| 53 |
+
|
| 54 |
+
transform = Compose(
|
| 55 |
+
[
|
| 56 |
+
Resize(
|
| 57 |
+
net_w,
|
| 58 |
+
net_h,
|
| 59 |
+
resize_target=None,
|
| 60 |
+
keep_aspect_ratio=True,
|
| 61 |
+
ensure_multiple_of=32,
|
| 62 |
+
resize_method=resize_mode,
|
| 63 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
| 64 |
+
),
|
| 65 |
+
normalization,
|
| 66 |
+
PrepareForNet(),
|
| 67 |
+
]
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
return transform
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def load_model(model_type, model_path=None):
|
| 74 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
| 75 |
+
# load network
|
| 76 |
+
if model_path is None:
|
| 77 |
+
model_path = ISL_PATHS[model_type]
|
| 78 |
+
if model_type == "dpt_large": # DPT-Large
|
| 79 |
+
model = DPTDepthModel(
|
| 80 |
+
path=model_path,
|
| 81 |
+
backbone="vitl16_384",
|
| 82 |
+
non_negative=True,
|
| 83 |
+
)
|
| 84 |
+
net_w, net_h = 384, 384
|
| 85 |
+
resize_mode = "minimal"
|
| 86 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 87 |
+
|
| 88 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
| 89 |
+
model = DPTDepthModel(
|
| 90 |
+
path=model_path,
|
| 91 |
+
backbone="vitb_rn50_384",
|
| 92 |
+
non_negative=True,
|
| 93 |
+
)
|
| 94 |
+
net_w, net_h = 384, 384
|
| 95 |
+
resize_mode = "minimal"
|
| 96 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 97 |
+
|
| 98 |
+
elif model_type == "midas_v21":
|
| 99 |
+
model = MidasNet(model_path, non_negative=True)
|
| 100 |
+
net_w, net_h = 384, 384
|
| 101 |
+
resize_mode = "upper_bound"
|
| 102 |
+
normalization = NormalizeImage(
|
| 103 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
elif model_type == "midas_v21_small":
|
| 107 |
+
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
| 108 |
+
non_negative=True, blocks={'expand': True})
|
| 109 |
+
net_w, net_h = 256, 256
|
| 110 |
+
resize_mode = "upper_bound"
|
| 111 |
+
normalization = NormalizeImage(
|
| 112 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
else:
|
| 116 |
+
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
| 117 |
+
assert False
|
| 118 |
+
|
| 119 |
+
transform = Compose(
|
| 120 |
+
[
|
| 121 |
+
Resize(
|
| 122 |
+
net_w,
|
| 123 |
+
net_h,
|
| 124 |
+
resize_target=None,
|
| 125 |
+
keep_aspect_ratio=True,
|
| 126 |
+
ensure_multiple_of=32,
|
| 127 |
+
resize_method=resize_mode,
|
| 128 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
| 129 |
+
),
|
| 130 |
+
normalization,
|
| 131 |
+
PrepareForNet(),
|
| 132 |
+
]
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
return model.eval(), transform
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class MiDaSInference(nn.Module):
|
| 139 |
+
MODEL_TYPES_TORCH_HUB = [
|
| 140 |
+
"DPT_Large",
|
| 141 |
+
"DPT_Hybrid",
|
| 142 |
+
"MiDaS_small"
|
| 143 |
+
]
|
| 144 |
+
MODEL_TYPES_ISL = [
|
| 145 |
+
"dpt_large",
|
| 146 |
+
"dpt_hybrid",
|
| 147 |
+
"midas_v21",
|
| 148 |
+
"midas_v21_small",
|
| 149 |
+
]
|
| 150 |
+
|
| 151 |
+
def __init__(self, model_type, model_path):
|
| 152 |
+
super().__init__()
|
| 153 |
+
assert (model_type in self.MODEL_TYPES_ISL)
|
| 154 |
+
model, _ = load_model(model_type, model_path)
|
| 155 |
+
self.model = model
|
| 156 |
+
self.model.train = disabled_train
|
| 157 |
+
|
| 158 |
+
def forward(self, x):
|
| 159 |
+
# x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array
|
| 160 |
+
# NOTE: we expect that the correct transform has been called during dataloading.
|
| 161 |
+
with torch.no_grad():
|
| 162 |
+
prediction = self.model(x)
|
| 163 |
+
prediction = torch.nn.functional.interpolate(
|
| 164 |
+
prediction.unsqueeze(1),
|
| 165 |
+
size=x.shape[2:],
|
| 166 |
+
mode="bicubic",
|
| 167 |
+
align_corners=False,
|
| 168 |
+
)
|
| 169 |
+
assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3])
|
| 170 |
+
return prediction
|
| 171 |
+
|
extralibs/midas/midas/__init__.py
ADDED
|
File without changes
|
extralibs/midas/midas/base_model.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class BaseModel(torch.nn.Module):
|
| 5 |
+
def load(self, path):
|
| 6 |
+
"""Load model from file.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
path (str): file path
|
| 10 |
+
"""
|
| 11 |
+
parameters = torch.load(path, map_location=torch.device('cpu'))
|
| 12 |
+
|
| 13 |
+
if "optimizer" in parameters:
|
| 14 |
+
parameters = parameters["model"]
|
| 15 |
+
|
| 16 |
+
self.load_state_dict(parameters)
|
extralibs/midas/midas/blocks.py
ADDED
|
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from .vit import (
|
| 5 |
+
_make_pretrained_vitb_rn50_384,
|
| 6 |
+
_make_pretrained_vitl16_384,
|
| 7 |
+
_make_pretrained_vitb16_384,
|
| 8 |
+
forward_vit,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
|
| 12 |
+
if backbone == "vitl16_384":
|
| 13 |
+
pretrained = _make_pretrained_vitl16_384(
|
| 14 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
| 15 |
+
)
|
| 16 |
+
scratch = _make_scratch(
|
| 17 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
| 18 |
+
) # ViT-L/16 - 85.0% Top1 (backbone)
|
| 19 |
+
elif backbone == "vitb_rn50_384":
|
| 20 |
+
pretrained = _make_pretrained_vitb_rn50_384(
|
| 21 |
+
use_pretrained,
|
| 22 |
+
hooks=hooks,
|
| 23 |
+
use_vit_only=use_vit_only,
|
| 24 |
+
use_readout=use_readout,
|
| 25 |
+
)
|
| 26 |
+
scratch = _make_scratch(
|
| 27 |
+
[256, 512, 768, 768], features, groups=groups, expand=expand
|
| 28 |
+
) # ViT-H/16 - 85.0% Top1 (backbone)
|
| 29 |
+
elif backbone == "vitb16_384":
|
| 30 |
+
pretrained = _make_pretrained_vitb16_384(
|
| 31 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
| 32 |
+
)
|
| 33 |
+
scratch = _make_scratch(
|
| 34 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
| 35 |
+
) # ViT-B/16 - 84.6% Top1 (backbone)
|
| 36 |
+
elif backbone == "resnext101_wsl":
|
| 37 |
+
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
| 38 |
+
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
|
| 39 |
+
elif backbone == "efficientnet_lite3":
|
| 40 |
+
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
|
| 41 |
+
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
|
| 42 |
+
else:
|
| 43 |
+
print(f"Backbone '{backbone}' not implemented")
|
| 44 |
+
assert False
|
| 45 |
+
|
| 46 |
+
return pretrained, scratch
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
| 50 |
+
scratch = nn.Module()
|
| 51 |
+
|
| 52 |
+
out_shape1 = out_shape
|
| 53 |
+
out_shape2 = out_shape
|
| 54 |
+
out_shape3 = out_shape
|
| 55 |
+
out_shape4 = out_shape
|
| 56 |
+
if expand==True:
|
| 57 |
+
out_shape1 = out_shape
|
| 58 |
+
out_shape2 = out_shape*2
|
| 59 |
+
out_shape3 = out_shape*4
|
| 60 |
+
out_shape4 = out_shape*8
|
| 61 |
+
|
| 62 |
+
scratch.layer1_rn = nn.Conv2d(
|
| 63 |
+
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
| 64 |
+
)
|
| 65 |
+
scratch.layer2_rn = nn.Conv2d(
|
| 66 |
+
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
| 67 |
+
)
|
| 68 |
+
scratch.layer3_rn = nn.Conv2d(
|
| 69 |
+
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
| 70 |
+
)
|
| 71 |
+
scratch.layer4_rn = nn.Conv2d(
|
| 72 |
+
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
return scratch
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
|
| 79 |
+
efficientnet = torch.hub.load(
|
| 80 |
+
"rwightman/gen-efficientnet-pytorch",
|
| 81 |
+
"tf_efficientnet_lite3",
|
| 82 |
+
pretrained=use_pretrained,
|
| 83 |
+
exportable=exportable
|
| 84 |
+
)
|
| 85 |
+
return _make_efficientnet_backbone(efficientnet)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def _make_efficientnet_backbone(effnet):
|
| 89 |
+
pretrained = nn.Module()
|
| 90 |
+
|
| 91 |
+
pretrained.layer1 = nn.Sequential(
|
| 92 |
+
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
|
| 93 |
+
)
|
| 94 |
+
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
|
| 95 |
+
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
|
| 96 |
+
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
|
| 97 |
+
|
| 98 |
+
return pretrained
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _make_resnet_backbone(resnet):
|
| 102 |
+
pretrained = nn.Module()
|
| 103 |
+
pretrained.layer1 = nn.Sequential(
|
| 104 |
+
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
pretrained.layer2 = resnet.layer2
|
| 108 |
+
pretrained.layer3 = resnet.layer3
|
| 109 |
+
pretrained.layer4 = resnet.layer4
|
| 110 |
+
|
| 111 |
+
return pretrained
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def _make_pretrained_resnext101_wsl(use_pretrained):
|
| 115 |
+
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
| 116 |
+
return _make_resnet_backbone(resnet)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
class Interpolate(nn.Module):
|
| 121 |
+
"""Interpolation module.
|
| 122 |
+
"""
|
| 123 |
+
|
| 124 |
+
def __init__(self, scale_factor, mode, align_corners=False):
|
| 125 |
+
"""Init.
|
| 126 |
+
|
| 127 |
+
Args:
|
| 128 |
+
scale_factor (float): scaling
|
| 129 |
+
mode (str): interpolation mode
|
| 130 |
+
"""
|
| 131 |
+
super(Interpolate, self).__init__()
|
| 132 |
+
|
| 133 |
+
self.interp = nn.functional.interpolate
|
| 134 |
+
self.scale_factor = scale_factor
|
| 135 |
+
self.mode = mode
|
| 136 |
+
self.align_corners = align_corners
|
| 137 |
+
|
| 138 |
+
def forward(self, x):
|
| 139 |
+
"""Forward pass.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
x (tensor): input
|
| 143 |
+
|
| 144 |
+
Returns:
|
| 145 |
+
tensor: interpolated data
|
| 146 |
+
"""
|
| 147 |
+
|
| 148 |
+
x = self.interp(
|
| 149 |
+
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
return x
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
class ResidualConvUnit(nn.Module):
|
| 156 |
+
"""Residual convolution module.
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
def __init__(self, features):
|
| 160 |
+
"""Init.
|
| 161 |
+
|
| 162 |
+
Args:
|
| 163 |
+
features (int): number of features
|
| 164 |
+
"""
|
| 165 |
+
super().__init__()
|
| 166 |
+
|
| 167 |
+
self.conv1 = nn.Conv2d(
|
| 168 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
self.conv2 = nn.Conv2d(
|
| 172 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
self.relu = nn.ReLU(inplace=True)
|
| 176 |
+
|
| 177 |
+
def forward(self, x):
|
| 178 |
+
"""Forward pass.
|
| 179 |
+
|
| 180 |
+
Args:
|
| 181 |
+
x (tensor): input
|
| 182 |
+
|
| 183 |
+
Returns:
|
| 184 |
+
tensor: output
|
| 185 |
+
"""
|
| 186 |
+
out = self.relu(x)
|
| 187 |
+
out = self.conv1(out)
|
| 188 |
+
out = self.relu(out)
|
| 189 |
+
out = self.conv2(out)
|
| 190 |
+
|
| 191 |
+
return out + x
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
class FeatureFusionBlock(nn.Module):
|
| 195 |
+
"""Feature fusion block.
|
| 196 |
+
"""
|
| 197 |
+
|
| 198 |
+
def __init__(self, features):
|
| 199 |
+
"""Init.
|
| 200 |
+
|
| 201 |
+
Args:
|
| 202 |
+
features (int): number of features
|
| 203 |
+
"""
|
| 204 |
+
super(FeatureFusionBlock, self).__init__()
|
| 205 |
+
|
| 206 |
+
self.resConfUnit1 = ResidualConvUnit(features)
|
| 207 |
+
self.resConfUnit2 = ResidualConvUnit(features)
|
| 208 |
+
|
| 209 |
+
def forward(self, *xs):
|
| 210 |
+
"""Forward pass.
|
| 211 |
+
|
| 212 |
+
Returns:
|
| 213 |
+
tensor: output
|
| 214 |
+
"""
|
| 215 |
+
output = xs[0]
|
| 216 |
+
|
| 217 |
+
if len(xs) == 2:
|
| 218 |
+
output += self.resConfUnit1(xs[1])
|
| 219 |
+
|
| 220 |
+
output = self.resConfUnit2(output)
|
| 221 |
+
|
| 222 |
+
output = nn.functional.interpolate(
|
| 223 |
+
output, scale_factor=2, mode="bilinear", align_corners=True
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
return output
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
class ResidualConvUnit_custom(nn.Module):
|
| 232 |
+
"""Residual convolution module.
|
| 233 |
+
"""
|
| 234 |
+
|
| 235 |
+
def __init__(self, features, activation, bn):
|
| 236 |
+
"""Init.
|
| 237 |
+
|
| 238 |
+
Args:
|
| 239 |
+
features (int): number of features
|
| 240 |
+
"""
|
| 241 |
+
super().__init__()
|
| 242 |
+
|
| 243 |
+
self.bn = bn
|
| 244 |
+
|
| 245 |
+
self.groups=1
|
| 246 |
+
|
| 247 |
+
self.conv1 = nn.Conv2d(
|
| 248 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
self.conv2 = nn.Conv2d(
|
| 252 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
if self.bn==True:
|
| 256 |
+
self.bn1 = nn.BatchNorm2d(features)
|
| 257 |
+
self.bn2 = nn.BatchNorm2d(features)
|
| 258 |
+
|
| 259 |
+
self.activation = activation
|
| 260 |
+
|
| 261 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
| 262 |
+
|
| 263 |
+
def forward(self, x):
|
| 264 |
+
"""Forward pass.
|
| 265 |
+
|
| 266 |
+
Args:
|
| 267 |
+
x (tensor): input
|
| 268 |
+
|
| 269 |
+
Returns:
|
| 270 |
+
tensor: output
|
| 271 |
+
"""
|
| 272 |
+
|
| 273 |
+
out = self.activation(x)
|
| 274 |
+
out = self.conv1(out)
|
| 275 |
+
if self.bn==True:
|
| 276 |
+
out = self.bn1(out)
|
| 277 |
+
|
| 278 |
+
out = self.activation(out)
|
| 279 |
+
out = self.conv2(out)
|
| 280 |
+
if self.bn==True:
|
| 281 |
+
out = self.bn2(out)
|
| 282 |
+
|
| 283 |
+
if self.groups > 1:
|
| 284 |
+
out = self.conv_merge(out)
|
| 285 |
+
|
| 286 |
+
return self.skip_add.add(out, x)
|
| 287 |
+
|
| 288 |
+
# return out + x
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
class FeatureFusionBlock_custom(nn.Module):
|
| 292 |
+
"""Feature fusion block.
|
| 293 |
+
"""
|
| 294 |
+
|
| 295 |
+
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
|
| 296 |
+
"""Init.
|
| 297 |
+
|
| 298 |
+
Args:
|
| 299 |
+
features (int): number of features
|
| 300 |
+
"""
|
| 301 |
+
super(FeatureFusionBlock_custom, self).__init__()
|
| 302 |
+
|
| 303 |
+
self.deconv = deconv
|
| 304 |
+
self.align_corners = align_corners
|
| 305 |
+
|
| 306 |
+
self.groups=1
|
| 307 |
+
|
| 308 |
+
self.expand = expand
|
| 309 |
+
out_features = features
|
| 310 |
+
if self.expand==True:
|
| 311 |
+
out_features = features//2
|
| 312 |
+
|
| 313 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
| 314 |
+
|
| 315 |
+
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
| 316 |
+
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
| 317 |
+
|
| 318 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
| 319 |
+
|
| 320 |
+
def forward(self, *xs):
|
| 321 |
+
"""Forward pass.
|
| 322 |
+
|
| 323 |
+
Returns:
|
| 324 |
+
tensor: output
|
| 325 |
+
"""
|
| 326 |
+
output = xs[0]
|
| 327 |
+
|
| 328 |
+
if len(xs) == 2:
|
| 329 |
+
res = self.resConfUnit1(xs[1])
|
| 330 |
+
output = self.skip_add.add(output, res)
|
| 331 |
+
# output += res
|
| 332 |
+
|
| 333 |
+
output = self.resConfUnit2(output)
|
| 334 |
+
|
| 335 |
+
output = nn.functional.interpolate(
|
| 336 |
+
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
output = self.out_conv(output)
|
| 340 |
+
|
| 341 |
+
return output
|
| 342 |
+
|
extralibs/midas/midas/dpt_depth.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from .base_model import BaseModel
|
| 6 |
+
from .blocks import (
|
| 7 |
+
FeatureFusionBlock,
|
| 8 |
+
FeatureFusionBlock_custom,
|
| 9 |
+
Interpolate,
|
| 10 |
+
_make_encoder,
|
| 11 |
+
forward_vit,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def _make_fusion_block(features, use_bn):
|
| 16 |
+
return FeatureFusionBlock_custom(
|
| 17 |
+
features,
|
| 18 |
+
nn.ReLU(False),
|
| 19 |
+
deconv=False,
|
| 20 |
+
bn=use_bn,
|
| 21 |
+
expand=False,
|
| 22 |
+
align_corners=True,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class DPT(BaseModel):
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
head,
|
| 30 |
+
features=256,
|
| 31 |
+
backbone="vitb_rn50_384",
|
| 32 |
+
readout="project",
|
| 33 |
+
channels_last=False,
|
| 34 |
+
use_bn=False,
|
| 35 |
+
):
|
| 36 |
+
|
| 37 |
+
super(DPT, self).__init__()
|
| 38 |
+
|
| 39 |
+
self.channels_last = channels_last
|
| 40 |
+
|
| 41 |
+
hooks = {
|
| 42 |
+
"vitb_rn50_384": [0, 1, 8, 11],
|
| 43 |
+
"vitb16_384": [2, 5, 8, 11],
|
| 44 |
+
"vitl16_384": [5, 11, 17, 23],
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
# Instantiate backbone and reassemble blocks
|
| 48 |
+
self.pretrained, self.scratch = _make_encoder(
|
| 49 |
+
backbone,
|
| 50 |
+
features,
|
| 51 |
+
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
| 52 |
+
groups=1,
|
| 53 |
+
expand=False,
|
| 54 |
+
exportable=False,
|
| 55 |
+
hooks=hooks[backbone],
|
| 56 |
+
use_readout=readout,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
| 60 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
| 61 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
| 62 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
| 63 |
+
|
| 64 |
+
self.scratch.output_conv = head
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def forward(self, x):
|
| 68 |
+
if self.channels_last == True:
|
| 69 |
+
x.contiguous(memory_format=torch.channels_last)
|
| 70 |
+
|
| 71 |
+
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
| 72 |
+
|
| 73 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
| 74 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
| 75 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
| 76 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
| 77 |
+
|
| 78 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
| 79 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
| 80 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
| 81 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
| 82 |
+
|
| 83 |
+
out = self.scratch.output_conv(path_1)
|
| 84 |
+
|
| 85 |
+
return out
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class DPTDepthModel(DPT):
|
| 89 |
+
def __init__(self, path=None, non_negative=True, **kwargs):
|
| 90 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
| 91 |
+
|
| 92 |
+
head = nn.Sequential(
|
| 93 |
+
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
| 94 |
+
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
| 95 |
+
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
| 96 |
+
nn.ReLU(True),
|
| 97 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
| 98 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
| 99 |
+
nn.Identity(),
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
super().__init__(head, **kwargs)
|
| 103 |
+
|
| 104 |
+
if path is not None:
|
| 105 |
+
self.load(path)
|
| 106 |
+
print("Midas depth estimation model loaded.")
|
| 107 |
+
|
| 108 |
+
def forward(self, x):
|
| 109 |
+
return super().forward(x).squeeze(dim=1)
|
| 110 |
+
|
extralibs/midas/midas/midas_net.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
| 2 |
+
This file contains code that is adapted from
|
| 3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
| 4 |
+
"""
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
|
| 8 |
+
from .base_model import BaseModel
|
| 9 |
+
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class MidasNet(BaseModel):
|
| 13 |
+
"""Network for monocular depth estimation.
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
def __init__(self, path=None, features=256, non_negative=True):
|
| 17 |
+
"""Init.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
path (str, optional): Path to saved model. Defaults to None.
|
| 21 |
+
features (int, optional): Number of features. Defaults to 256.
|
| 22 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
| 23 |
+
"""
|
| 24 |
+
print("Loading weights: ", path)
|
| 25 |
+
|
| 26 |
+
super(MidasNet, self).__init__()
|
| 27 |
+
|
| 28 |
+
use_pretrained = False if path is None else True
|
| 29 |
+
|
| 30 |
+
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
| 31 |
+
|
| 32 |
+
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
| 33 |
+
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
| 34 |
+
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
| 35 |
+
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
| 36 |
+
|
| 37 |
+
self.scratch.output_conv = nn.Sequential(
|
| 38 |
+
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
| 39 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
| 40 |
+
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
| 41 |
+
nn.ReLU(True),
|
| 42 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
| 43 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
if path:
|
| 47 |
+
self.load(path)
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
"""Forward pass.
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
x (tensor): input data (image)
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
tensor: depth
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
layer_1 = self.pretrained.layer1(x)
|
| 60 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
| 61 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
| 62 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
| 63 |
+
|
| 64 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
| 65 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
| 66 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
| 67 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
| 68 |
+
|
| 69 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
| 70 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
| 71 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
| 72 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
| 73 |
+
|
| 74 |
+
out = self.scratch.output_conv(path_1)
|
| 75 |
+
|
| 76 |
+
return torch.squeeze(out, dim=1)
|
extralibs/midas/midas/midas_net_custom.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
| 2 |
+
This file contains code that is adapted from
|
| 3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
| 4 |
+
"""
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
|
| 8 |
+
from .base_model import BaseModel
|
| 9 |
+
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class MidasNet_small(BaseModel):
|
| 13 |
+
"""Network for monocular depth estimation.
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
| 17 |
+
blocks={'expand': True}):
|
| 18 |
+
"""Init.
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
path (str, optional): Path to saved model. Defaults to None.
|
| 22 |
+
features (int, optional): Number of features. Defaults to 256.
|
| 23 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
| 24 |
+
"""
|
| 25 |
+
print("Loading weights: ", path)
|
| 26 |
+
|
| 27 |
+
super(MidasNet_small, self).__init__()
|
| 28 |
+
|
| 29 |
+
use_pretrained = False if path else True
|
| 30 |
+
|
| 31 |
+
self.channels_last = channels_last
|
| 32 |
+
self.blocks = blocks
|
| 33 |
+
self.backbone = backbone
|
| 34 |
+
|
| 35 |
+
self.groups = 1
|
| 36 |
+
|
| 37 |
+
features1=features
|
| 38 |
+
features2=features
|
| 39 |
+
features3=features
|
| 40 |
+
features4=features
|
| 41 |
+
self.expand = False
|
| 42 |
+
if "expand" in self.blocks and self.blocks['expand'] == True:
|
| 43 |
+
self.expand = True
|
| 44 |
+
features1=features
|
| 45 |
+
features2=features*2
|
| 46 |
+
features3=features*4
|
| 47 |
+
features4=features*8
|
| 48 |
+
|
| 49 |
+
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
| 50 |
+
|
| 51 |
+
self.scratch.activation = nn.ReLU(False)
|
| 52 |
+
|
| 53 |
+
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
| 54 |
+
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
| 55 |
+
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
| 56 |
+
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
self.scratch.output_conv = nn.Sequential(
|
| 60 |
+
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
| 61 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
| 62 |
+
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
| 63 |
+
self.scratch.activation,
|
| 64 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
| 65 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
| 66 |
+
nn.Identity(),
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
if path:
|
| 70 |
+
self.load(path)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def forward(self, x):
|
| 74 |
+
"""Forward pass.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
x (tensor): input data (image)
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
tensor: depth
|
| 81 |
+
"""
|
| 82 |
+
if self.channels_last==True:
|
| 83 |
+
print("self.channels_last = ", self.channels_last)
|
| 84 |
+
x.contiguous(memory_format=torch.channels_last)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
layer_1 = self.pretrained.layer1(x)
|
| 88 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
| 89 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
| 90 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
| 91 |
+
|
| 92 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
| 93 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
| 94 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
| 95 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
| 99 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
| 100 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
| 101 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
| 102 |
+
|
| 103 |
+
out = self.scratch.output_conv(path_1)
|
| 104 |
+
|
| 105 |
+
return torch.squeeze(out, dim=1)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def fuse_model(m):
|
| 110 |
+
prev_previous_type = nn.Identity()
|
| 111 |
+
prev_previous_name = ''
|
| 112 |
+
previous_type = nn.Identity()
|
| 113 |
+
previous_name = ''
|
| 114 |
+
for name, module in m.named_modules():
|
| 115 |
+
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
| 116 |
+
# print("FUSED ", prev_previous_name, previous_name, name)
|
| 117 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
| 118 |
+
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
| 119 |
+
# print("FUSED ", prev_previous_name, previous_name)
|
| 120 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
| 121 |
+
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
| 122 |
+
# print("FUSED ", previous_name, name)
|
| 123 |
+
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
| 124 |
+
|
| 125 |
+
prev_previous_type = previous_type
|
| 126 |
+
prev_previous_name = previous_name
|
| 127 |
+
previous_type = type(module)
|
| 128 |
+
previous_name = name
|
extralibs/midas/midas/transforms.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import math
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
| 7 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
sample (dict): sample
|
| 11 |
+
size (tuple): image size
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
tuple: new size
|
| 15 |
+
"""
|
| 16 |
+
shape = list(sample["disparity"].shape)
|
| 17 |
+
|
| 18 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
| 19 |
+
return sample
|
| 20 |
+
|
| 21 |
+
scale = [0, 0]
|
| 22 |
+
scale[0] = size[0] / shape[0]
|
| 23 |
+
scale[1] = size[1] / shape[1]
|
| 24 |
+
|
| 25 |
+
scale = max(scale)
|
| 26 |
+
|
| 27 |
+
shape[0] = math.ceil(scale * shape[0])
|
| 28 |
+
shape[1] = math.ceil(scale * shape[1])
|
| 29 |
+
|
| 30 |
+
# resize
|
| 31 |
+
sample["image"] = cv2.resize(
|
| 32 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
sample["disparity"] = cv2.resize(
|
| 36 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
| 37 |
+
)
|
| 38 |
+
sample["mask"] = cv2.resize(
|
| 39 |
+
sample["mask"].astype(np.float32),
|
| 40 |
+
tuple(shape[::-1]),
|
| 41 |
+
interpolation=cv2.INTER_NEAREST,
|
| 42 |
+
)
|
| 43 |
+
sample["mask"] = sample["mask"].astype(bool)
|
| 44 |
+
|
| 45 |
+
return tuple(shape)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class Resize(object):
|
| 49 |
+
"""Resize sample to given size (width, height).
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
width,
|
| 55 |
+
height,
|
| 56 |
+
resize_target=True,
|
| 57 |
+
keep_aspect_ratio=False,
|
| 58 |
+
ensure_multiple_of=1,
|
| 59 |
+
resize_method="lower_bound",
|
| 60 |
+
image_interpolation_method=cv2.INTER_AREA,
|
| 61 |
+
):
|
| 62 |
+
"""Init.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
width (int): desired output width
|
| 66 |
+
height (int): desired output height
|
| 67 |
+
resize_target (bool, optional):
|
| 68 |
+
True: Resize the full sample (image, mask, target).
|
| 69 |
+
False: Resize image only.
|
| 70 |
+
Defaults to True.
|
| 71 |
+
keep_aspect_ratio (bool, optional):
|
| 72 |
+
True: Keep the aspect ratio of the input sample.
|
| 73 |
+
Output sample might not have the given width and height, and
|
| 74 |
+
resize behaviour depends on the parameter 'resize_method'.
|
| 75 |
+
Defaults to False.
|
| 76 |
+
ensure_multiple_of (int, optional):
|
| 77 |
+
Output width and height is constrained to be multiple of this parameter.
|
| 78 |
+
Defaults to 1.
|
| 79 |
+
resize_method (str, optional):
|
| 80 |
+
"lower_bound": Output will be at least as large as the given size.
|
| 81 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
| 82 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
| 83 |
+
Defaults to "lower_bound".
|
| 84 |
+
"""
|
| 85 |
+
self.__width = width
|
| 86 |
+
self.__height = height
|
| 87 |
+
|
| 88 |
+
self.__resize_target = resize_target
|
| 89 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
| 90 |
+
self.__multiple_of = ensure_multiple_of
|
| 91 |
+
self.__resize_method = resize_method
|
| 92 |
+
self.__image_interpolation_method = image_interpolation_method
|
| 93 |
+
|
| 94 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
| 95 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 96 |
+
|
| 97 |
+
if max_val is not None and y > max_val:
|
| 98 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 99 |
+
|
| 100 |
+
if y < min_val:
|
| 101 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 102 |
+
|
| 103 |
+
return y
|
| 104 |
+
|
| 105 |
+
def get_size(self, width, height):
|
| 106 |
+
# determine new height and width
|
| 107 |
+
scale_height = self.__height / height
|
| 108 |
+
scale_width = self.__width / width
|
| 109 |
+
|
| 110 |
+
if self.__keep_aspect_ratio:
|
| 111 |
+
if self.__resize_method == "lower_bound":
|
| 112 |
+
# scale such that output size is lower bound
|
| 113 |
+
if scale_width > scale_height:
|
| 114 |
+
# fit width
|
| 115 |
+
scale_height = scale_width
|
| 116 |
+
else:
|
| 117 |
+
# fit height
|
| 118 |
+
scale_width = scale_height
|
| 119 |
+
elif self.__resize_method == "upper_bound":
|
| 120 |
+
# scale such that output size is upper bound
|
| 121 |
+
if scale_width < scale_height:
|
| 122 |
+
# fit width
|
| 123 |
+
scale_height = scale_width
|
| 124 |
+
else:
|
| 125 |
+
# fit height
|
| 126 |
+
scale_width = scale_height
|
| 127 |
+
elif self.__resize_method == "minimal":
|
| 128 |
+
# scale as least as possbile
|
| 129 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
| 130 |
+
# fit width
|
| 131 |
+
scale_height = scale_width
|
| 132 |
+
else:
|
| 133 |
+
# fit height
|
| 134 |
+
scale_width = scale_height
|
| 135 |
+
else:
|
| 136 |
+
raise ValueError(
|
| 137 |
+
f"resize_method {self.__resize_method} not implemented"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
if self.__resize_method == "lower_bound":
|
| 141 |
+
new_height = self.constrain_to_multiple_of(
|
| 142 |
+
scale_height * height, min_val=self.__height
|
| 143 |
+
)
|
| 144 |
+
new_width = self.constrain_to_multiple_of(
|
| 145 |
+
scale_width * width, min_val=self.__width
|
| 146 |
+
)
|
| 147 |
+
elif self.__resize_method == "upper_bound":
|
| 148 |
+
new_height = self.constrain_to_multiple_of(
|
| 149 |
+
scale_height * height, max_val=self.__height
|
| 150 |
+
)
|
| 151 |
+
new_width = self.constrain_to_multiple_of(
|
| 152 |
+
scale_width * width, max_val=self.__width
|
| 153 |
+
)
|
| 154 |
+
elif self.__resize_method == "minimal":
|
| 155 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
| 156 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
| 157 |
+
else:
|
| 158 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
| 159 |
+
|
| 160 |
+
return (new_width, new_height)
|
| 161 |
+
|
| 162 |
+
def __call__(self, sample):
|
| 163 |
+
width, height = self.get_size(
|
| 164 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# resize sample
|
| 168 |
+
sample["image"] = cv2.resize(
|
| 169 |
+
sample["image"],
|
| 170 |
+
(width, height),
|
| 171 |
+
interpolation=self.__image_interpolation_method,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
if self.__resize_target:
|
| 175 |
+
if "disparity" in sample:
|
| 176 |
+
sample["disparity"] = cv2.resize(
|
| 177 |
+
sample["disparity"],
|
| 178 |
+
(width, height),
|
| 179 |
+
interpolation=cv2.INTER_NEAREST,
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
if "depth" in sample:
|
| 183 |
+
sample["depth"] = cv2.resize(
|
| 184 |
+
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
sample["mask"] = cv2.resize(
|
| 188 |
+
sample["mask"].astype(np.float32),
|
| 189 |
+
(width, height),
|
| 190 |
+
interpolation=cv2.INTER_NEAREST,
|
| 191 |
+
)
|
| 192 |
+
sample["mask"] = sample["mask"].astype(bool)
|
| 193 |
+
|
| 194 |
+
return sample
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class NormalizeImage(object):
|
| 198 |
+
"""Normlize image by given mean and std.
|
| 199 |
+
"""
|
| 200 |
+
|
| 201 |
+
def __init__(self, mean, std):
|
| 202 |
+
self.__mean = mean
|
| 203 |
+
self.__std = std
|
| 204 |
+
|
| 205 |
+
def __call__(self, sample):
|
| 206 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
| 207 |
+
|
| 208 |
+
return sample
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class PrepareForNet(object):
|
| 212 |
+
"""Prepare sample for usage as network input.
|
| 213 |
+
"""
|
| 214 |
+
|
| 215 |
+
def __init__(self):
|
| 216 |
+
pass
|
| 217 |
+
|
| 218 |
+
def __call__(self, sample):
|
| 219 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
| 220 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
| 221 |
+
|
| 222 |
+
if "mask" in sample:
|
| 223 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
| 224 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
| 225 |
+
|
| 226 |
+
if "disparity" in sample:
|
| 227 |
+
disparity = sample["disparity"].astype(np.float32)
|
| 228 |
+
sample["disparity"] = np.ascontiguousarray(disparity)
|
| 229 |
+
|
| 230 |
+
if "depth" in sample:
|
| 231 |
+
depth = sample["depth"].astype(np.float32)
|
| 232 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
| 233 |
+
|
| 234 |
+
return sample
|
extralibs/midas/midas/vit.py
ADDED
|
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import timm
|
| 4 |
+
import types
|
| 5 |
+
import math
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Slice(nn.Module):
|
| 10 |
+
def __init__(self, start_index=1):
|
| 11 |
+
super(Slice, self).__init__()
|
| 12 |
+
self.start_index = start_index
|
| 13 |
+
|
| 14 |
+
def forward(self, x):
|
| 15 |
+
return x[:, self.start_index :]
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class AddReadout(nn.Module):
|
| 19 |
+
def __init__(self, start_index=1):
|
| 20 |
+
super(AddReadout, self).__init__()
|
| 21 |
+
self.start_index = start_index
|
| 22 |
+
|
| 23 |
+
def forward(self, x):
|
| 24 |
+
if self.start_index == 2:
|
| 25 |
+
readout = (x[:, 0] + x[:, 1]) / 2
|
| 26 |
+
else:
|
| 27 |
+
readout = x[:, 0]
|
| 28 |
+
return x[:, self.start_index :] + readout.unsqueeze(1)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class ProjectReadout(nn.Module):
|
| 32 |
+
def __init__(self, in_features, start_index=1):
|
| 33 |
+
super(ProjectReadout, self).__init__()
|
| 34 |
+
self.start_index = start_index
|
| 35 |
+
|
| 36 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
| 37 |
+
|
| 38 |
+
def forward(self, x):
|
| 39 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
| 40 |
+
features = torch.cat((x[:, self.start_index :], readout), -1)
|
| 41 |
+
|
| 42 |
+
return self.project(features)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class Transpose(nn.Module):
|
| 46 |
+
def __init__(self, dim0, dim1):
|
| 47 |
+
super(Transpose, self).__init__()
|
| 48 |
+
self.dim0 = dim0
|
| 49 |
+
self.dim1 = dim1
|
| 50 |
+
|
| 51 |
+
def forward(self, x):
|
| 52 |
+
x = x.transpose(self.dim0, self.dim1)
|
| 53 |
+
return x
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
activations = {}
|
| 57 |
+
def forward_vit(pretrained, x):
|
| 58 |
+
b, c, h, w = x.shape
|
| 59 |
+
|
| 60 |
+
glob = pretrained.model.forward_flex(x)
|
| 61 |
+
pretrained.activations = activations
|
| 62 |
+
|
| 63 |
+
layer_1 = pretrained.activations["1"]
|
| 64 |
+
layer_2 = pretrained.activations["2"]
|
| 65 |
+
layer_3 = pretrained.activations["3"]
|
| 66 |
+
layer_4 = pretrained.activations["4"]
|
| 67 |
+
|
| 68 |
+
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
| 69 |
+
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
| 70 |
+
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
| 71 |
+
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
| 72 |
+
|
| 73 |
+
unflatten = nn.Sequential(
|
| 74 |
+
nn.Unflatten(
|
| 75 |
+
2,
|
| 76 |
+
torch.Size(
|
| 77 |
+
[
|
| 78 |
+
h // pretrained.model.patch_size[1],
|
| 79 |
+
w // pretrained.model.patch_size[0],
|
| 80 |
+
]
|
| 81 |
+
),
|
| 82 |
+
)
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
if layer_1.ndim == 3:
|
| 86 |
+
layer_1 = unflatten(layer_1)
|
| 87 |
+
if layer_2.ndim == 3:
|
| 88 |
+
layer_2 = unflatten(layer_2)
|
| 89 |
+
if layer_3.ndim == 3:
|
| 90 |
+
layer_3 = unflatten(layer_3)
|
| 91 |
+
if layer_4.ndim == 3:
|
| 92 |
+
layer_4 = unflatten(layer_4)
|
| 93 |
+
|
| 94 |
+
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
| 95 |
+
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
| 96 |
+
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
| 97 |
+
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
| 98 |
+
|
| 99 |
+
return layer_1, layer_2, layer_3, layer_4
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
| 103 |
+
posemb_tok, posemb_grid = (
|
| 104 |
+
posemb[:, : self.start_index],
|
| 105 |
+
posemb[0, self.start_index :],
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
| 109 |
+
|
| 110 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
| 111 |
+
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
| 112 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
| 113 |
+
|
| 114 |
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
| 115 |
+
|
| 116 |
+
return posemb
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def forward_flex(self, x):
|
| 120 |
+
b, c, h, w = x.shape
|
| 121 |
+
|
| 122 |
+
pos_embed = self._resize_pos_embed(
|
| 123 |
+
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
B = x.shape[0]
|
| 127 |
+
|
| 128 |
+
if hasattr(self.patch_embed, "backbone"):
|
| 129 |
+
x = self.patch_embed.backbone(x)
|
| 130 |
+
if isinstance(x, (list, tuple)):
|
| 131 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
| 132 |
+
|
| 133 |
+
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
| 134 |
+
|
| 135 |
+
if getattr(self, "dist_token", None) is not None:
|
| 136 |
+
cls_tokens = self.cls_token.expand(
|
| 137 |
+
B, -1, -1
|
| 138 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
| 139 |
+
dist_token = self.dist_token.expand(B, -1, -1)
|
| 140 |
+
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
| 141 |
+
else:
|
| 142 |
+
cls_tokens = self.cls_token.expand(
|
| 143 |
+
B, -1, -1
|
| 144 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
| 145 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
| 146 |
+
|
| 147 |
+
x = x + pos_embed
|
| 148 |
+
x = self.pos_drop(x)
|
| 149 |
+
|
| 150 |
+
for blk in self.blocks:
|
| 151 |
+
x = blk(x)
|
| 152 |
+
|
| 153 |
+
x = self.norm(x)
|
| 154 |
+
|
| 155 |
+
return x
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def get_activation(name):
|
| 159 |
+
def hook(model, input, output):
|
| 160 |
+
activations[name] = output
|
| 161 |
+
return hook
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
| 165 |
+
if use_readout == "ignore":
|
| 166 |
+
readout_oper = [Slice(start_index)] * len(features)
|
| 167 |
+
elif use_readout == "add":
|
| 168 |
+
readout_oper = [AddReadout(start_index)] * len(features)
|
| 169 |
+
elif use_readout == "project":
|
| 170 |
+
readout_oper = [
|
| 171 |
+
ProjectReadout(vit_features, start_index) for out_feat in features
|
| 172 |
+
]
|
| 173 |
+
else:
|
| 174 |
+
assert (
|
| 175 |
+
False
|
| 176 |
+
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
| 177 |
+
|
| 178 |
+
return readout_oper
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def _make_vit_b16_backbone(
|
| 182 |
+
model,
|
| 183 |
+
features=[96, 192, 384, 768],
|
| 184 |
+
size=[384, 384],
|
| 185 |
+
hooks=[2, 5, 8, 11],
|
| 186 |
+
vit_features=768,
|
| 187 |
+
use_readout="ignore",
|
| 188 |
+
start_index=1,
|
| 189 |
+
):
|
| 190 |
+
pretrained = nn.Module()
|
| 191 |
+
|
| 192 |
+
pretrained.model = model
|
| 193 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
| 194 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
| 195 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
| 196 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
| 197 |
+
|
| 198 |
+
pretrained.activations = activations
|
| 199 |
+
|
| 200 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
| 201 |
+
|
| 202 |
+
# 32, 48, 136, 384
|
| 203 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
| 204 |
+
readout_oper[0],
|
| 205 |
+
Transpose(1, 2),
|
| 206 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 207 |
+
nn.Conv2d(
|
| 208 |
+
in_channels=vit_features,
|
| 209 |
+
out_channels=features[0],
|
| 210 |
+
kernel_size=1,
|
| 211 |
+
stride=1,
|
| 212 |
+
padding=0,
|
| 213 |
+
),
|
| 214 |
+
nn.ConvTranspose2d(
|
| 215 |
+
in_channels=features[0],
|
| 216 |
+
out_channels=features[0],
|
| 217 |
+
kernel_size=4,
|
| 218 |
+
stride=4,
|
| 219 |
+
padding=0,
|
| 220 |
+
bias=True,
|
| 221 |
+
dilation=1,
|
| 222 |
+
groups=1,
|
| 223 |
+
),
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
| 227 |
+
readout_oper[1],
|
| 228 |
+
Transpose(1, 2),
|
| 229 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 230 |
+
nn.Conv2d(
|
| 231 |
+
in_channels=vit_features,
|
| 232 |
+
out_channels=features[1],
|
| 233 |
+
kernel_size=1,
|
| 234 |
+
stride=1,
|
| 235 |
+
padding=0,
|
| 236 |
+
),
|
| 237 |
+
nn.ConvTranspose2d(
|
| 238 |
+
in_channels=features[1],
|
| 239 |
+
out_channels=features[1],
|
| 240 |
+
kernel_size=2,
|
| 241 |
+
stride=2,
|
| 242 |
+
padding=0,
|
| 243 |
+
bias=True,
|
| 244 |
+
dilation=1,
|
| 245 |
+
groups=1,
|
| 246 |
+
),
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
| 250 |
+
readout_oper[2],
|
| 251 |
+
Transpose(1, 2),
|
| 252 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 253 |
+
nn.Conv2d(
|
| 254 |
+
in_channels=vit_features,
|
| 255 |
+
out_channels=features[2],
|
| 256 |
+
kernel_size=1,
|
| 257 |
+
stride=1,
|
| 258 |
+
padding=0,
|
| 259 |
+
),
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
| 263 |
+
readout_oper[3],
|
| 264 |
+
Transpose(1, 2),
|
| 265 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 266 |
+
nn.Conv2d(
|
| 267 |
+
in_channels=vit_features,
|
| 268 |
+
out_channels=features[3],
|
| 269 |
+
kernel_size=1,
|
| 270 |
+
stride=1,
|
| 271 |
+
padding=0,
|
| 272 |
+
),
|
| 273 |
+
nn.Conv2d(
|
| 274 |
+
in_channels=features[3],
|
| 275 |
+
out_channels=features[3],
|
| 276 |
+
kernel_size=3,
|
| 277 |
+
stride=2,
|
| 278 |
+
padding=1,
|
| 279 |
+
),
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
pretrained.model.start_index = start_index
|
| 283 |
+
pretrained.model.patch_size = [16, 16]
|
| 284 |
+
|
| 285 |
+
# We inject this function into the VisionTransformer instances so that
|
| 286 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
| 287 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
| 288 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
| 289 |
+
_resize_pos_embed, pretrained.model
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
return pretrained
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
| 296 |
+
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
| 297 |
+
|
| 298 |
+
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
| 299 |
+
return _make_vit_b16_backbone(
|
| 300 |
+
model,
|
| 301 |
+
features=[256, 512, 1024, 1024],
|
| 302 |
+
hooks=hooks,
|
| 303 |
+
vit_features=1024,
|
| 304 |
+
use_readout=use_readout,
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
| 309 |
+
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
| 310 |
+
|
| 311 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 312 |
+
return _make_vit_b16_backbone(
|
| 313 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
| 318 |
+
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
| 319 |
+
|
| 320 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 321 |
+
return _make_vit_b16_backbone(
|
| 322 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
|
| 327 |
+
model = timm.create_model(
|
| 328 |
+
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 332 |
+
return _make_vit_b16_backbone(
|
| 333 |
+
model,
|
| 334 |
+
features=[96, 192, 384, 768],
|
| 335 |
+
hooks=hooks,
|
| 336 |
+
use_readout=use_readout,
|
| 337 |
+
start_index=2,
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
def _make_vit_b_rn50_backbone(
|
| 342 |
+
model,
|
| 343 |
+
features=[256, 512, 768, 768],
|
| 344 |
+
size=[384, 384],
|
| 345 |
+
hooks=[0, 1, 8, 11],
|
| 346 |
+
vit_features=768,
|
| 347 |
+
use_vit_only=False,
|
| 348 |
+
use_readout="ignore",
|
| 349 |
+
start_index=1,
|
| 350 |
+
):
|
| 351 |
+
pretrained = nn.Module()
|
| 352 |
+
|
| 353 |
+
pretrained.model = model
|
| 354 |
+
|
| 355 |
+
if use_vit_only == True:
|
| 356 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
| 357 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
| 358 |
+
else:
|
| 359 |
+
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
| 360 |
+
get_activation("1")
|
| 361 |
+
)
|
| 362 |
+
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
| 363 |
+
get_activation("2")
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
| 367 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
| 368 |
+
|
| 369 |
+
pretrained.activations = activations
|
| 370 |
+
|
| 371 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
| 372 |
+
|
| 373 |
+
if use_vit_only == True:
|
| 374 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
| 375 |
+
readout_oper[0],
|
| 376 |
+
Transpose(1, 2),
|
| 377 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 378 |
+
nn.Conv2d(
|
| 379 |
+
in_channels=vit_features,
|
| 380 |
+
out_channels=features[0],
|
| 381 |
+
kernel_size=1,
|
| 382 |
+
stride=1,
|
| 383 |
+
padding=0,
|
| 384 |
+
),
|
| 385 |
+
nn.ConvTranspose2d(
|
| 386 |
+
in_channels=features[0],
|
| 387 |
+
out_channels=features[0],
|
| 388 |
+
kernel_size=4,
|
| 389 |
+
stride=4,
|
| 390 |
+
padding=0,
|
| 391 |
+
bias=True,
|
| 392 |
+
dilation=1,
|
| 393 |
+
groups=1,
|
| 394 |
+
),
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
| 398 |
+
readout_oper[1],
|
| 399 |
+
Transpose(1, 2),
|
| 400 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 401 |
+
nn.Conv2d(
|
| 402 |
+
in_channels=vit_features,
|
| 403 |
+
out_channels=features[1],
|
| 404 |
+
kernel_size=1,
|
| 405 |
+
stride=1,
|
| 406 |
+
padding=0,
|
| 407 |
+
),
|
| 408 |
+
nn.ConvTranspose2d(
|
| 409 |
+
in_channels=features[1],
|
| 410 |
+
out_channels=features[1],
|
| 411 |
+
kernel_size=2,
|
| 412 |
+
stride=2,
|
| 413 |
+
padding=0,
|
| 414 |
+
bias=True,
|
| 415 |
+
dilation=1,
|
| 416 |
+
groups=1,
|
| 417 |
+
),
|
| 418 |
+
)
|
| 419 |
+
else:
|
| 420 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
| 421 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
| 422 |
+
)
|
| 423 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
| 424 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
| 428 |
+
readout_oper[2],
|
| 429 |
+
Transpose(1, 2),
|
| 430 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 431 |
+
nn.Conv2d(
|
| 432 |
+
in_channels=vit_features,
|
| 433 |
+
out_channels=features[2],
|
| 434 |
+
kernel_size=1,
|
| 435 |
+
stride=1,
|
| 436 |
+
padding=0,
|
| 437 |
+
),
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
| 441 |
+
readout_oper[3],
|
| 442 |
+
Transpose(1, 2),
|
| 443 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 444 |
+
nn.Conv2d(
|
| 445 |
+
in_channels=vit_features,
|
| 446 |
+
out_channels=features[3],
|
| 447 |
+
kernel_size=1,
|
| 448 |
+
stride=1,
|
| 449 |
+
padding=0,
|
| 450 |
+
),
|
| 451 |
+
nn.Conv2d(
|
| 452 |
+
in_channels=features[3],
|
| 453 |
+
out_channels=features[3],
|
| 454 |
+
kernel_size=3,
|
| 455 |
+
stride=2,
|
| 456 |
+
padding=1,
|
| 457 |
+
),
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
pretrained.model.start_index = start_index
|
| 461 |
+
pretrained.model.patch_size = [16, 16]
|
| 462 |
+
|
| 463 |
+
# We inject this function into the VisionTransformer instances so that
|
| 464 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
| 465 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
| 466 |
+
|
| 467 |
+
# We inject this function into the VisionTransformer instances so that
|
| 468 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
| 469 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
| 470 |
+
_resize_pos_embed, pretrained.model
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
return pretrained
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def _make_pretrained_vitb_rn50_384(
|
| 477 |
+
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
| 478 |
+
):
|
| 479 |
+
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
| 480 |
+
|
| 481 |
+
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
| 482 |
+
return _make_vit_b_rn50_backbone(
|
| 483 |
+
model,
|
| 484 |
+
features=[256, 512, 768, 768],
|
| 485 |
+
size=[384, 384],
|
| 486 |
+
hooks=hooks,
|
| 487 |
+
use_vit_only=use_vit_only,
|
| 488 |
+
use_readout=use_readout,
|
| 489 |
+
)
|
extralibs/midas/utils.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utils for monoDepth."""
|
| 2 |
+
import sys
|
| 3 |
+
import re
|
| 4 |
+
import numpy as np
|
| 5 |
+
import cv2
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def read_pfm(path):
|
| 10 |
+
"""Read pfm file.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
path (str): path to file
|
| 14 |
+
|
| 15 |
+
Returns:
|
| 16 |
+
tuple: (data, scale)
|
| 17 |
+
"""
|
| 18 |
+
with open(path, "rb") as file:
|
| 19 |
+
|
| 20 |
+
color = None
|
| 21 |
+
width = None
|
| 22 |
+
height = None
|
| 23 |
+
scale = None
|
| 24 |
+
endian = None
|
| 25 |
+
|
| 26 |
+
header = file.readline().rstrip()
|
| 27 |
+
if header.decode("ascii") == "PF":
|
| 28 |
+
color = True
|
| 29 |
+
elif header.decode("ascii") == "Pf":
|
| 30 |
+
color = False
|
| 31 |
+
else:
|
| 32 |
+
raise Exception("Not a PFM file: " + path)
|
| 33 |
+
|
| 34 |
+
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
| 35 |
+
if dim_match:
|
| 36 |
+
width, height = list(map(int, dim_match.groups()))
|
| 37 |
+
else:
|
| 38 |
+
raise Exception("Malformed PFM header.")
|
| 39 |
+
|
| 40 |
+
scale = float(file.readline().decode("ascii").rstrip())
|
| 41 |
+
if scale < 0:
|
| 42 |
+
# little-endian
|
| 43 |
+
endian = "<"
|
| 44 |
+
scale = -scale
|
| 45 |
+
else:
|
| 46 |
+
# big-endian
|
| 47 |
+
endian = ">"
|
| 48 |
+
|
| 49 |
+
data = np.fromfile(file, endian + "f")
|
| 50 |
+
shape = (height, width, 3) if color else (height, width)
|
| 51 |
+
|
| 52 |
+
data = np.reshape(data, shape)
|
| 53 |
+
data = np.flipud(data)
|
| 54 |
+
|
| 55 |
+
return data, scale
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def write_pfm(path, image, scale=1):
|
| 59 |
+
"""Write pfm file.
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
path (str): pathto file
|
| 63 |
+
image (array): data
|
| 64 |
+
scale (int, optional): Scale. Defaults to 1.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
with open(path, "wb") as file:
|
| 68 |
+
color = None
|
| 69 |
+
|
| 70 |
+
if image.dtype.name != "float32":
|
| 71 |
+
raise Exception("Image dtype must be float32.")
|
| 72 |
+
|
| 73 |
+
image = np.flipud(image)
|
| 74 |
+
|
| 75 |
+
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
| 76 |
+
color = True
|
| 77 |
+
elif (
|
| 78 |
+
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
| 79 |
+
): # greyscale
|
| 80 |
+
color = False
|
| 81 |
+
else:
|
| 82 |
+
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
| 83 |
+
|
| 84 |
+
file.write("PF\n" if color else "Pf\n".encode())
|
| 85 |
+
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
| 86 |
+
|
| 87 |
+
endian = image.dtype.byteorder
|
| 88 |
+
|
| 89 |
+
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
| 90 |
+
scale = -scale
|
| 91 |
+
|
| 92 |
+
file.write("%f\n".encode() % scale)
|
| 93 |
+
|
| 94 |
+
image.tofile(file)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def read_image(path):
|
| 98 |
+
"""Read image and output RGB image (0-1).
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
path (str): path to file
|
| 102 |
+
|
| 103 |
+
Returns:
|
| 104 |
+
array: RGB image (0-1)
|
| 105 |
+
"""
|
| 106 |
+
img = cv2.imread(path)
|
| 107 |
+
|
| 108 |
+
if img.ndim == 2:
|
| 109 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
| 110 |
+
|
| 111 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
| 112 |
+
|
| 113 |
+
return img
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def resize_image(img):
|
| 117 |
+
"""Resize image and make it fit for network.
|
| 118 |
+
|
| 119 |
+
Args:
|
| 120 |
+
img (array): image
|
| 121 |
+
|
| 122 |
+
Returns:
|
| 123 |
+
tensor: data ready for network
|
| 124 |
+
"""
|
| 125 |
+
height_orig = img.shape[0]
|
| 126 |
+
width_orig = img.shape[1]
|
| 127 |
+
|
| 128 |
+
if width_orig > height_orig:
|
| 129 |
+
scale = width_orig / 384
|
| 130 |
+
else:
|
| 131 |
+
scale = height_orig / 384
|
| 132 |
+
|
| 133 |
+
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
| 134 |
+
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
| 135 |
+
|
| 136 |
+
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
| 137 |
+
|
| 138 |
+
img_resized = (
|
| 139 |
+
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
| 140 |
+
)
|
| 141 |
+
img_resized = img_resized.unsqueeze(0)
|
| 142 |
+
|
| 143 |
+
return img_resized
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def resize_depth(depth, width, height):
|
| 147 |
+
"""Resize depth map and bring to CPU (numpy).
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
depth (tensor): depth
|
| 151 |
+
width (int): image width
|
| 152 |
+
height (int): image height
|
| 153 |
+
|
| 154 |
+
Returns:
|
| 155 |
+
array: processed depth
|
| 156 |
+
"""
|
| 157 |
+
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
| 158 |
+
|
| 159 |
+
depth_resized = cv2.resize(
|
| 160 |
+
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
return depth_resized
|
| 164 |
+
|
| 165 |
+
def write_depth(path, depth, bits=1):
|
| 166 |
+
"""Write depth map to pfm and png file.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
path (str): filepath without extension
|
| 170 |
+
depth (array): depth
|
| 171 |
+
"""
|
| 172 |
+
write_pfm(path + ".pfm", depth.astype(np.float32))
|
| 173 |
+
|
| 174 |
+
depth_min = depth.min()
|
| 175 |
+
depth_max = depth.max()
|
| 176 |
+
|
| 177 |
+
max_val = (2**(8*bits))-1
|
| 178 |
+
|
| 179 |
+
if depth_max - depth_min > np.finfo("float").eps:
|
| 180 |
+
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
| 181 |
+
else:
|
| 182 |
+
out = np.zeros(depth.shape, dtype=depth.type)
|
| 183 |
+
|
| 184 |
+
if bits == 1:
|
| 185 |
+
cv2.imwrite(path + ".png", out.astype("uint8"))
|
| 186 |
+
elif bits == 2:
|
| 187 |
+
cv2.imwrite(path + ".png", out.astype("uint16"))
|
| 188 |
+
|
| 189 |
+
return
|
lvdm/models/ddpm3d.py
CHANGED
|
@@ -11,11 +11,10 @@ from einops import rearrange, repeat
|
|
| 11 |
|
| 12 |
import torch
|
| 13 |
import torch.nn as nn
|
| 14 |
-
from torch.optim.lr_scheduler import LambdaLR
|
| 15 |
-
from torchvision.utils import make_grid
|
| 16 |
import pytorch_lightning as pl
|
| 17 |
-
from
|
| 18 |
-
|
|
|
|
| 19 |
from lvdm.models.modules.distributions import normal_kl, DiagonalGaussianDistribution
|
| 20 |
from lvdm.models.modules.util import make_beta_schedule, extract_into_tensor, noise_like
|
| 21 |
from lvdm.models.modules.lora import inject_trainable_lora
|
|
@@ -1433,3 +1432,53 @@ class DiffusionWrapper(pl.LightningModule):
|
|
| 1433 |
|
| 1434 |
return out
|
| 1435 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
import torch
|
| 13 |
import torch.nn as nn
|
|
|
|
|
|
|
| 14 |
import pytorch_lightning as pl
|
| 15 |
+
from torchvision.utils import make_grid
|
| 16 |
+
from torch.optim.lr_scheduler import LambdaLR
|
| 17 |
+
from pytorch_lightning.utilities import rank_zero_only
|
| 18 |
from lvdm.models.modules.distributions import normal_kl, DiagonalGaussianDistribution
|
| 19 |
from lvdm.models.modules.util import make_beta_schedule, extract_into_tensor, noise_like
|
| 20 |
from lvdm.models.modules.lora import inject_trainable_lora
|
|
|
|
| 1432 |
|
| 1433 |
return out
|
| 1434 |
|
| 1435 |
+
|
| 1436 |
+
class T2VAdapterDepth(LatentDiffusion):
|
| 1437 |
+
def __init__(self, depth_stage_config, adapter_config, *args, **kwargs):
|
| 1438 |
+
super(T2VAdapterDepth, self).__init__(*args, **kwargs)
|
| 1439 |
+
self.adapter = instantiate_from_config(adapter_config)
|
| 1440 |
+
self.condtype = adapter_config.cond_name
|
| 1441 |
+
self.depth_stage_model = instantiate_from_config(depth_stage_config)
|
| 1442 |
+
|
| 1443 |
+
def prepare_midas_input(self, batch_x):
|
| 1444 |
+
# input: b,c,h,w
|
| 1445 |
+
x_midas = torch.nn.functional.interpolate(batch_x, size=(384, 384), mode='bicubic')
|
| 1446 |
+
return x_midas
|
| 1447 |
+
|
| 1448 |
+
@torch.no_grad()
|
| 1449 |
+
def get_batch_depth(self, batch_x, target_size, encode_bs=1):
|
| 1450 |
+
b, c, t, h, w = batch_x.shape
|
| 1451 |
+
merge_x = rearrange(batch_x, 'b c t h w -> (b t) c h w')
|
| 1452 |
+
split_x = torch.split(merge_x, encode_bs, dim=0)
|
| 1453 |
+
cond_depth_list = []
|
| 1454 |
+
for x in split_x:
|
| 1455 |
+
x_midas = self.prepare_midas_input(x)
|
| 1456 |
+
cond_depth = self.depth_stage_model(x_midas)
|
| 1457 |
+
cond_depth = torch.nn.functional.interpolate(
|
| 1458 |
+
cond_depth,
|
| 1459 |
+
size=target_size,
|
| 1460 |
+
mode="bicubic",
|
| 1461 |
+
align_corners=False,
|
| 1462 |
+
)
|
| 1463 |
+
depth_min, depth_max = torch.amin(cond_depth, dim=[1, 2, 3], keepdim=True), torch.amax(cond_depth, dim=[1, 2, 3], keepdim=True)
|
| 1464 |
+
cond_depth = 2. * (cond_depth - depth_min) / (depth_max - depth_min + 1e-7) - 1.
|
| 1465 |
+
cond_depth_list.append(cond_depth)
|
| 1466 |
+
batch_cond_depth=torch.cat(cond_depth_list, dim=0)
|
| 1467 |
+
batch_cond_depth = rearrange(batch_cond_depth, '(b t) c h w -> b c t h w', b=b, t=t)
|
| 1468 |
+
return batch_cond_depth
|
| 1469 |
+
|
| 1470 |
+
def get_adapter_features(self, extra_cond, encode_bs=1):
|
| 1471 |
+
b, c, t, h, w = extra_cond.shape
|
| 1472 |
+
## process in 2D manner
|
| 1473 |
+
merge_extra_cond = rearrange(extra_cond, 'b c t h w -> (b t) c h w')
|
| 1474 |
+
split_extra_cond = torch.split(merge_extra_cond, encode_bs, dim=0)
|
| 1475 |
+
features_adapter_list = []
|
| 1476 |
+
for extra_cond in split_extra_cond:
|
| 1477 |
+
features_adapter = self.adapter(extra_cond)
|
| 1478 |
+
features_adapter_list.append(features_adapter)
|
| 1479 |
+
merge_features_adapter_list = []
|
| 1480 |
+
for i in range(len(features_adapter_list[0])):
|
| 1481 |
+
merge_features_adapter = torch.cat([features_adapter_list[num][i] for num in range(len(features_adapter_list))], dim=0)
|
| 1482 |
+
merge_features_adapter_list.append(merge_features_adapter)
|
| 1483 |
+
merge_features_adapter_list = [rearrange(feature, '(b t) c h w -> b c t h w', b=b, t=t) for feature in merge_features_adapter_list]
|
| 1484 |
+
return merge_features_adapter_list
|
lvdm/models/modules/lora.py
CHANGED
|
@@ -622,7 +622,7 @@ def net_load_lora(net, checkpoint_path, alpha=1.0, remove=False):
|
|
| 622 |
state_dict = torch.load(checkpoint_path)
|
| 623 |
for k, v in state_dict.items():
|
| 624 |
state_dict[k] = v.to(net.device)
|
| 625 |
-
|
| 626 |
for key in state_dict:
|
| 627 |
if ".alpha" in key or key in visited:
|
| 628 |
continue
|
|
@@ -680,6 +680,83 @@ def change_lora(model, inject_lora=False, lora_scale=1.0, lora_path='', last_tim
|
|
| 680 |
net_load_lora(model, lora_path, alpha=lora_scale)
|
| 681 |
|
| 682 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 683 |
|
| 684 |
def load_safeloras(path, device="cpu"):
|
| 685 |
safeloras = safe_open(path, framework="pt", device=device)
|
|
|
|
| 622 |
state_dict = torch.load(checkpoint_path)
|
| 623 |
for k, v in state_dict.items():
|
| 624 |
state_dict[k] = v.to(net.device)
|
| 625 |
+
|
| 626 |
for key in state_dict:
|
| 627 |
if ".alpha" in key or key in visited:
|
| 628 |
continue
|
|
|
|
| 680 |
net_load_lora(model, lora_path, alpha=lora_scale)
|
| 681 |
|
| 682 |
|
| 683 |
+
def net_load_lora_v2(net, checkpoint_path, alpha=1.0, remove=False, origin_weight=None):
|
| 684 |
+
visited=[]
|
| 685 |
+
state_dict = torch.load(checkpoint_path)
|
| 686 |
+
for k, v in state_dict.items():
|
| 687 |
+
state_dict[k] = v.to(net.device)
|
| 688 |
+
|
| 689 |
+
for key in state_dict:
|
| 690 |
+
if ".alpha" in key or key in visited:
|
| 691 |
+
continue
|
| 692 |
+
layer_infos = key.split(".")[:-2] # remove lora_up and down weight
|
| 693 |
+
curr_layer = net
|
| 694 |
+
# find the target layer
|
| 695 |
+
temp_name = layer_infos.pop(0)
|
| 696 |
+
while len(layer_infos) > -1:
|
| 697 |
+
curr_layer = curr_layer.__getattr__(temp_name)
|
| 698 |
+
if len(layer_infos) > 0:
|
| 699 |
+
temp_name = layer_infos.pop(0)
|
| 700 |
+
elif len(layer_infos) == 0:
|
| 701 |
+
break
|
| 702 |
+
if curr_layer.__class__ not in [nn.Linear, nn.Conv2d]:
|
| 703 |
+
print('missing param at:', key)
|
| 704 |
+
continue
|
| 705 |
+
pair_keys = []
|
| 706 |
+
if "lora_down" in key:
|
| 707 |
+
pair_keys.append(key.replace("lora_down", "lora_up"))
|
| 708 |
+
pair_keys.append(key)
|
| 709 |
+
else:
|
| 710 |
+
pair_keys.append(key)
|
| 711 |
+
pair_keys.append(key.replace("lora_up", "lora_down"))
|
| 712 |
+
|
| 713 |
+
# storage weight
|
| 714 |
+
if origin_weight is None:
|
| 715 |
+
origin_weight = dict()
|
| 716 |
+
storage_key = key.replace("lora_down", "lora").replace("lora_up", "lora")
|
| 717 |
+
origin_weight[storage_key] = curr_layer.weight.data.clone()
|
| 718 |
+
else:
|
| 719 |
+
storage_key = key.replace("lora_down", "lora").replace("lora_up", "lora")
|
| 720 |
+
if storage_key not in origin_weight.keys():
|
| 721 |
+
origin_weight[storage_key] = curr_layer.weight.data.clone()
|
| 722 |
+
|
| 723 |
+
|
| 724 |
+
# update
|
| 725 |
+
if len(state_dict[pair_keys[0]].shape) == 4:
|
| 726 |
+
# for conv
|
| 727 |
+
if remove:
|
| 728 |
+
curr_layer.weight.data = origin_weight[storage_key].clone()
|
| 729 |
+
else:
|
| 730 |
+
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
|
| 731 |
+
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
|
| 732 |
+
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
| 733 |
+
else:
|
| 734 |
+
# for linear
|
| 735 |
+
if remove:
|
| 736 |
+
curr_layer.weight.data = origin_weight[storage_key].clone()
|
| 737 |
+
else:
|
| 738 |
+
weight_up = state_dict[pair_keys[0]].to(torch.float32)
|
| 739 |
+
weight_down = state_dict[pair_keys[1]].to(torch.float32)
|
| 740 |
+
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
|
| 741 |
+
|
| 742 |
+
# update visited list
|
| 743 |
+
for item in pair_keys:
|
| 744 |
+
visited.append(item)
|
| 745 |
+
print('load_weight_num:',len(visited))
|
| 746 |
+
return origin_weight
|
| 747 |
+
|
| 748 |
+
def change_lora_v2(model, inject_lora=False, lora_scale=1.0, lora_path='', last_time_lora='', last_time_lora_scale=1.0, origin_weight=None):
|
| 749 |
+
# remove lora
|
| 750 |
+
if last_time_lora != '':
|
| 751 |
+
origin_weight = net_load_lora_v2(model, last_time_lora, alpha=last_time_lora_scale, remove=True, origin_weight=origin_weight)
|
| 752 |
+
# add new lora
|
| 753 |
+
if inject_lora:
|
| 754 |
+
origin_weight = net_load_lora_v2(model, lora_path, alpha=lora_scale, origin_weight=origin_weight)
|
| 755 |
+
return origin_weight
|
| 756 |
+
|
| 757 |
+
|
| 758 |
+
|
| 759 |
+
|
| 760 |
|
| 761 |
def load_safeloras(path, device="cpu"):
|
| 762 |
safeloras = safe_open(path, framework="pt", device=device)
|
lvdm/models/modules/openaimodel3d.py
CHANGED
|
@@ -629,7 +629,7 @@ class UNetModel(nn.Module):
|
|
| 629 |
self.middle_block.apply(convert_module_to_f32)
|
| 630 |
self.output_blocks.apply(convert_module_to_f32)
|
| 631 |
|
| 632 |
-
def forward(self, x, timesteps=None, time_emb_replace=None, context=None, y=None, **kwargs):
|
| 633 |
"""
|
| 634 |
Apply the model to an input batch.
|
| 635 |
:param x: an [N x C x ...] Tensor of inputs.
|
|
@@ -651,9 +651,17 @@ class UNetModel(nn.Module):
|
|
| 651 |
emb = emb + self.label_emb(y)
|
| 652 |
|
| 653 |
h = x.type(self.dtype)
|
| 654 |
-
|
|
|
|
| 655 |
h = module(h, emb, context, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 656 |
hs.append(h)
|
|
|
|
|
|
|
|
|
|
| 657 |
h = self.middle_block(h, emb, context, **kwargs)
|
| 658 |
for module in self.output_blocks:
|
| 659 |
h = th.cat([h, hs.pop()], dim=1)
|
|
|
|
| 629 |
self.middle_block.apply(convert_module_to_f32)
|
| 630 |
self.output_blocks.apply(convert_module_to_f32)
|
| 631 |
|
| 632 |
+
def forward(self, x, timesteps=None, time_emb_replace=None, context=None, features_adapter=None, y=None, **kwargs):
|
| 633 |
"""
|
| 634 |
Apply the model to an input batch.
|
| 635 |
:param x: an [N x C x ...] Tensor of inputs.
|
|
|
|
| 651 |
emb = emb + self.label_emb(y)
|
| 652 |
|
| 653 |
h = x.type(self.dtype)
|
| 654 |
+
adapter_idx = 0
|
| 655 |
+
for id, module in enumerate(self.input_blocks):
|
| 656 |
h = module(h, emb, context, **kwargs)
|
| 657 |
+
## plug-in adapter features
|
| 658 |
+
if ((id+1)%3 == 0) and features_adapter is not None:
|
| 659 |
+
h = h + features_adapter[adapter_idx]
|
| 660 |
+
adapter_idx += 1
|
| 661 |
hs.append(h)
|
| 662 |
+
if features_adapter is not None:
|
| 663 |
+
assert len(features_adapter)==adapter_idx, 'Mismatch features adapter'
|
| 664 |
+
|
| 665 |
h = self.middle_block(h, emb, context, **kwargs)
|
| 666 |
for module in self.output_blocks:
|
| 667 |
h = th.cat([h, hs.pop()], dim=1)
|
lvdm/samplers/ddim.py
CHANGED
|
@@ -197,7 +197,7 @@ class DDIMSampler(object):
|
|
| 197 |
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
| 198 |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 199 |
unconditional_guidance_scale=1., unconditional_conditioning=None, sample_noise=None,
|
| 200 |
-
cond_fn=None,uc_type=None,
|
| 201 |
**kwargs,
|
| 202 |
):
|
| 203 |
b, *_, device = *x.shape, x.device
|
|
@@ -206,15 +206,15 @@ class DDIMSampler(object):
|
|
| 206 |
else:
|
| 207 |
is_video = False
|
| 208 |
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 209 |
-
e_t = self.model.apply_model(x, t, c, **
|
| 210 |
else:
|
| 211 |
# with unconditional condition
|
| 212 |
if isinstance(c, torch.Tensor):
|
| 213 |
-
e_t = self.model.apply_model(x, t, c, **
|
| 214 |
-
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **
|
| 215 |
elif isinstance(c, dict):
|
| 216 |
-
e_t = self.model.apply_model(x, t, c, **
|
| 217 |
-
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **
|
| 218 |
else:
|
| 219 |
raise NotImplementedError
|
| 220 |
# text cfg
|
|
|
|
| 197 |
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
| 198 |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 199 |
unconditional_guidance_scale=1., unconditional_conditioning=None, sample_noise=None,
|
| 200 |
+
cond_fn=None, uc_type=None,
|
| 201 |
**kwargs,
|
| 202 |
):
|
| 203 |
b, *_, device = *x.shape, x.device
|
|
|
|
| 206 |
else:
|
| 207 |
is_video = False
|
| 208 |
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 209 |
+
e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
|
| 210 |
else:
|
| 211 |
# with unconditional condition
|
| 212 |
if isinstance(c, torch.Tensor):
|
| 213 |
+
e_t = self.model.apply_model(x, t, c, **kwargs)
|
| 214 |
+
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs)
|
| 215 |
elif isinstance(c, dict):
|
| 216 |
+
e_t = self.model.apply_model(x, t, c, **kwargs)
|
| 217 |
+
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs)
|
| 218 |
else:
|
| 219 |
raise NotImplementedError
|
| 220 |
# text cfg
|
lvdm/utils/saving_utils.py
CHANGED
|
@@ -14,7 +14,7 @@ from torchvision.utils import make_grid
|
|
| 14 |
from torch import Tensor
|
| 15 |
from torchvision.transforms.functional import to_tensor
|
| 16 |
|
| 17 |
-
|
| 18 |
def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None):
|
| 19 |
"""
|
| 20 |
video: torch.Tensor, b,c,t,h,w, 0-1
|
|
@@ -32,7 +32,7 @@ def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None):
|
|
| 32 |
#print(f'Save video to {savepath}')
|
| 33 |
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
| 34 |
|
| 35 |
-
# ----------------------------------------------------------------------------------------------
|
| 36 |
def savenp2sheet(imgs, savepath, nrow=None):
|
| 37 |
""" save multiple imgs (in numpy array type) to a img sheet.
|
| 38 |
img sheet is one row.
|
|
|
|
| 14 |
from torch import Tensor
|
| 15 |
from torchvision.transforms.functional import to_tensor
|
| 16 |
|
| 17 |
+
|
| 18 |
def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None):
|
| 19 |
"""
|
| 20 |
video: torch.Tensor, b,c,t,h,w, 0-1
|
|
|
|
| 32 |
#print(f'Save video to {savepath}')
|
| 33 |
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
| 34 |
|
| 35 |
+
# ----------------------------------------------------------------------------------------------
|
| 36 |
def savenp2sheet(imgs, savepath, nrow=None):
|
| 37 |
""" save multiple imgs (in numpy array type) to a img sheet.
|
| 38 |
img sheet is one row.
|