Spaces:
Running
Running
import gradio as gr | |
from PIL import Image | |
from inference.main import MultiModalPhi2 | |
messages = [] | |
multimodal_phi2 = MultiModalPhi2( | |
modelname_or_path="RaviNaik/Llava-Phi2", | |
temperature=0.2, | |
max_new_tokens=1024, | |
device="cpu", | |
) | |
def add_content(chatbot, text, image, audio_upload, audio_mic) -> gr.Chatbot: | |
textflag, imageflag, audioflag = False, False, False | |
if text not in ["", None]: | |
chatbot.append((text, None)) | |
textflag = True | |
if image is not None: | |
chatbot.append(((image,), None)) | |
imageflag = True | |
if audio_mic is not None: | |
chatbot.append(((audio_mic,), None)) | |
audioflag = True | |
else: | |
if audio_upload is not None: | |
chatbot.append(((audio_upload,), None)) | |
audioflag = True | |
if not any([textflag, imageflag, audioflag]): | |
# Raise an error if neither text nor file is provided | |
raise gr.Error("Enter a valid text, image or audio") | |
return chatbot | |
def clear_data(): | |
return {prompt: None, image: None, audio_upload: None, audio_mic: None, chatbot: []} | |
def run(history, text, image, audio_upload, audio_mic): | |
if text in [None, ""]: | |
text = None | |
if audio_upload is not None: | |
audio = audio_upload | |
elif audio_mic is not None: | |
audio = audio_mic | |
else: | |
audio = None | |
print("text", text) | |
print("image", image) | |
print("audio", audio) | |
if image is not None: | |
image = Image.open(image) | |
outputs = multimodal_phi2(text, audio, image) | |
# outputs = "" | |
history.append((None, outputs.title())) | |
return history, None, None, None, None | |
with gr.Blocks() as demo: | |
gr.Markdown("## MulitModal Phi2 Model Pretraining and Finetuning from Scratch") | |
gr.Markdown( | |
"""This is a multimodal implementation of [Phi2](https://huggingface.co/microsoft/phi-2) model. | |
Please find the source code and training details [here](https://github.com/RaviNaik/ERA-CAPSTONE/MultiModalPhi2). | |
### Details: | |
1. LLM Backbone: [Phi2](https://huggingface.co/microsoft/phi-2) | |
2. Vision Tower: [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | |
3. Audio Model: [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) | |
4. Pretraining Dataset: [LAION-CC-SBU dataset with BLIP captions(200k samples)](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) | |
5. Finetuning Dataset: [Instruct 150k dataset based on COCO](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) | |
6. Finetuned Model: [RaviNaik/Llava-Phi2](https://huggingface.co/RaviNaik/Llava-Phi2) | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
# Creating a column with a scale of 6 | |
with gr.Box(): | |
with gr.Row(): | |
# Adding a Textbox with a placeholder "write prompt" | |
prompt = gr.Textbox( | |
placeholder="Enter Prompt", lines=2, label="Query", value=None | |
) | |
# Creating a column with a scale of 2 | |
with gr.Row(): | |
# Adding image | |
image = gr.Image(type="filepath", value=None) | |
# Creating a column with a scale of 2 | |
with gr.Row(): | |
# Add audio | |
audio_upload = gr.Audio(source="upload", type="filepath") | |
audio_mic = gr.Audio( | |
source="microphone", type="filepath", format="mp3" | |
) | |
with gr.Column(scale=8): | |
with gr.Box(): | |
with gr.Row(): | |
chatbot = gr.Chatbot( | |
avatar_images=("π§", "π€"), | |
height=550, | |
) | |
with gr.Row(): | |
# Adding a Button | |
submit = gr.Button() | |
clear = gr.Button(value="Clear") | |
submit.click( | |
add_content, | |
inputs=[chatbot, prompt, image, audio_upload, audio_mic], | |
outputs=[chatbot], | |
).success( | |
run, | |
inputs=[chatbot, prompt, image, audio_upload, audio_mic], | |
outputs=[chatbot, prompt, image, audio_upload, audio_mic], | |
) | |
clear.click( | |
clear_data, | |
outputs=[prompt, image, audio_upload, audio_mic, chatbot], | |
) | |
demo.launch() | |