File size: 5,025 Bytes
db25049
5f4c60f
a0aa5cc
 
 
 
 
 
 
 
d9ae67b
a0aa5cc
d9ae67b
9778377
 
db25049
9778377
 
 
d5d388a
9778377
 
 
 
815b392
d5d388a
05213c6
 
 
 
 
 
815b392
9778377
 
2bf18ec
9778377
 
 
 
 
 
 
a0aa5cc
9778377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0aa5cc
9778377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0aa5cc
9778377
 
 
 
 
 
 
 
 
 
 
 
c35ed0b
 
9778377
 
 
 
 
 
 
 
09ef98b
 
9778377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e2646d
9778377
 
 
 
 
 
 
 
 
 
 
8e2646d
 
9778377
 
 
8e2646d
 
9778377
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import spaces
import subprocess
# def install_mmcv():
#     try:
#         subprocess.run([
#             "pip", "install", "mmcv-full==1.7.2",
#             "-f", "https://download.openmmlab.com/mmcv/dist/cu121/torch2.1.0/"
#         ], check=True)
#     except subprocess.CalledProcessError as e:
#         print("Failed to install mmcv-full:", e)

# install_mmcv()
import mmcv
import gradio as gr
import numpy as np

import torch
import os
import cv2

from PIL import Image
import torchvision.transforms as transforms
from net.dornet import Net
from net.dornet_ddp import Net_ddp


print("=" * 50)
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"torch version: {torch.__version__}")
print(f"CUDA version: {torch.version.cuda}")
print(f"mmcv version: {mmcv.__version__}")
print("=" * 50)

# init
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device = "cpu"
net = Net(tiny_model=False).to(device)
model_ckpt_map = {
    "RGB-D-D": "./checkpoints/RGBDD.pth",
    "TOFDSR": "./checkpoints/TOFDSR.pth"
}

# load model
@spaces.GPU
def load_model(model_type: str):
    global net
    ckpt_path = model_ckpt_map[model_type]
    print(f"Loading weights from: {ckpt_path}")
    if model_type == "RGB-D-D":
        net = Net(tiny_model=False).to(device)
    elif model_type == "TOFDSR":
        net = Net_ddp(tiny_model=False).srn.to(device)
    else:
        raise ValueError(f"Unknown model_type: {model_type}")

    net.load_state_dict(torch.load(ckpt_path, map_location=device))
    net.eval()

load_model("RGB-D-D")


# data process
@spaces.GPU
def preprocess_inputs(rgb_image: Image.Image, lr_depth: Image.Image):
    image = np.array(rgb_image.convert("RGB")).astype(np.float32)
    h, w, _ = image.shape
    lr = np.array(lr_depth.resize((w, h), Image.BICUBIC)).astype(np.float32)
    # Normalize depth
    max_out, min_out = 5000.0, 0.0
    lr = (lr - min_out) / (max_out - min_out)
    # Normalize RGB
    maxx, minn = np.max(image), np.min(image)
    image = (image - minn) / (maxx - minn)
    # To tensor
    data_transform = transforms.Compose([transforms.ToTensor()])
    image = data_transform(image).float()
    lr = data_transform(np.expand_dims(lr, 2)).float()
    # Add batch dimension
    lr = lr.unsqueeze(0).to(device)
    image = image.unsqueeze(0).to(device)
    return image, lr, min_out, max_out


# model inference
@spaces.GPU
@torch.no_grad()
def infer(rgb_image: Image.Image, lr_depth: Image.Image, model_type: str):
    load_model(model_type)  # reset weight

    image, lr, min_out, max_out = preprocess_inputs(rgb_image, lr_depth)

    if model_type == "RGB-D-D":
        out = net(x_query=lr, rgb=image)
    elif model_type == "TOFDSR":
        out, _ = net(x_query=lr, rgb=image)

    pred = out[0, 0] * (max_out - min_out) + min_out
    pred = pred.cpu().numpy().astype(np.uint16)
    
    # raw
    pred_gray = Image.fromarray(pred)

    # heat
    pred_norm = (pred - np.min(pred)) / (np.max(pred) - np.min(pred)) * 255
    pred_vis = pred_norm.astype(np.uint8)
    pred_heat = cv2.applyColorMap(pred_vis, cv2.COLORMAP_PLASMA)
    pred_heat = cv2.cvtColor(pred_heat, cv2.COLOR_BGR2RGB)
    # return pred_gray, Image.fromarray(pred_heat)
    return Image.fromarray(pred_heat)


Intro = """
## DORNet: A Degradation Oriented and Regularized Network for Blind Depth Super-Resolution
[πŸ“„ Paper](https://arxiv.org/pdf/2410.11666) β€’ [πŸ’» Code](https://github.com/yanzq95/DORNet) β€’ [πŸ“¦ Model](https://huggingface.co/wzxwyx/DORNet/tree/main)
"""

with gr.Blocks(css="""
    .output-image {
        display: flex;
        justify-content: center;
        align-items: center;
    }
    .output-image img {
        margin: auto;
        display: block;
    }
""") as demo:
    gr.Markdown(Intro)

    with gr.Row():
        with gr.Column():
            rgb_input = gr.Image(label="RGB Image", type="pil")
            lr_input = gr.Image(label="Low-res Depth", type="pil", image_mode="I")
        with gr.Column():
            # output1 = gr.Image(label="DORNet Output", type="pil", elem_classes=["output-image"])
            output2 = gr.Image(label="Normalized Output", type="pil", elem_classes=["output-image"])

    model_selector = gr.Dropdown(choices=["RGB-D-D", "TOFDSR"], label="Model Type", value="RGB-D-D")
    run_button = gr.Button("Run Inference")

    gr.Examples(
        examples=[
            ["examples/RGB-D-D/20200518160957_RGB.jpg", "examples/RGB-D-D/20200518160957_LR_fill_depth.png", "RGB-D-D"],
            ["examples/TOFDSR/2020_09_08_13_59_59_435_rgb_rgb_crop.png", "examples/TOFDSR/2020_09_08_13_59_59_435_rgb_depth_crop_fill.png", "TOFDSR"],
        ],
        inputs=[rgb_input, lr_input, model_selector],
        # outputs=[output1, output2],
        outputs=[output2],
        label="Try Examples ↓"
    )

    # run_button.click(fn=infer, inputs=[rgb_input, lr_input, model_selector], outputs=[output1, output2])
    run_button.click(fn=infer, inputs=[rgb_input, lr_input, model_selector], outputs=[output2])

demo.launch()