File size: 6,749 Bytes
68c537d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
from net.dornet import Net
from net.CR import *

from data.rgbdd_dataloader import *
from data.nyu_dataloader import *

from utils import calc_rmse, rgbdd_calc_rmse
 
from torch.utils.data import Dataset
from torchvision import transforms, utils
import torch
import torch.optim as optim
import torch.nn as nn

from tqdm import tqdm
import logging
from datetime import datetime
import os

import numpy as np

parser = argparse.ArgumentParser()
parser.add_argument('--scale', type=int, default=4, help='scale factor')
parser.add_argument('--lr', default='0.0001', type=float, help='learning rate')
parser.add_argument('--result', default='experiment', help='learning rate')
parser.add_argument('--tiny_model', action='store_true', help='tiny model')
parser.add_argument('--epoch', default=300, type=int, help='max epoch')
parser.add_argument("--decay_iterations", type=list, default=[1.2e5, 2e5, 3.6e5],
                    help="steps to start lr decay")
parser.add_argument("--gamma", type=float, default=0.2, help="decay rate of learning rate")
parser.add_argument("--root_dir", type=str, default='./dataset/RGB-D-D', help="root dir of dataset")
parser.add_argument("--batch_size", type=int, default=3, help="batch_size of training dataloader")
parser.add_argument("--blur_sigma", type=int, default=3.6, help="blur_sigma")
parser.add_argument('--isNoisy', action='store_true', help='Noisy')

opt = parser.parse_args()
print(opt)

s = datetime.now().strftime('%Y%m%d%H%M%S')
dataset_name = opt.root_dir.split('/')[-1]
result_root = '%s/%s-lr_%s-s_%s-%s-b_%s' % (opt.result, s, opt.lr, opt.scale, dataset_name, opt.batch_size)
if not os.path.exists(result_root):
    os.mkdir(result_root)

logging.basicConfig(filename='%s/train.log' % result_root, format='%(asctime)s %(message)s', level=logging.INFO)
logging.info(opt)

net = Net(tiny_model=opt.tiny_model).cuda()

print("**********************Parameters***********************")
print(sum(p.numel() for p in net.parameters() if p.requires_grad))
print("**********************Parameters***********************")
net.train()

optimizer = optim.Adam(net.parameters(), lr=opt.lr)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=opt.decay_iterations, gamma=opt.gamma)

CL = ContrastLoss(ablation=False)
l1 = nn.L1Loss().cuda()

data_transform = transforms.Compose([transforms.ToTensor()])


if dataset_name == 'RGB-D-D':
    train_dataset = RGBDD_Dataset(root_dir=opt.root_dir, scale=opt.scale, downsample='real', train=True,
                                  transform=data_transform, isNoisy=opt.isNoisy, blur_sigma=opt.blur_sigma)
    test_dataset = RGBDD_Dataset(root_dir=opt.root_dir, scale=opt.scale, downsample='real', train=False,
                                 transform=data_transform, isNoisy=opt.isNoisy, blur_sigma=opt.blur_sigma)

elif dataset_name == 'NYU-v2':
    test_minmax = np.load('%s/test_minmax.npy' % opt.root_dir)
    train_dataset = NYU_v2_datset(root_dir=opt.root_dir, scale=opt.scale, transform=data_transform, train=True)
    test_dataset = NYU_v2_datset(root_dir=opt.root_dir, scale=opt.scale, transform=data_transform, train=False)


train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=8)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=8)

max_epoch = opt.epoch
num_train = len(train_dataloader)
best_rmse = 100.0
best_epoch = 0
for epoch in range(max_epoch):
    # ---------
    # Training
    # ---------
    net.train()
    running_loss = 0.0

    t = tqdm(iter(train_dataloader), leave=True, total=len(train_dataloader))

    for idx, data in enumerate(t):
        batches_done = num_train * epoch + idx
        optimizer.zero_grad()
        guidance, lr, gt = data['guidance'].cuda(), data['lr'].cuda(), data['gt'].cuda()

        restored, d_lr_, aux_loss = net(x_query=lr, rgb=guidance)

        rec_loss = l1(restored, gt)
        da_loss = l1(d_lr_, lr)
        cl_loss = CL(d_lr_,lr,restored)
        loss = rec_loss + 0.1 * da_loss + 0.1 * cl_loss + aux_loss

        loss.backward()
        optimizer.step()
        scheduler.step()
        running_loss += loss.data.item()

        t.set_description(
            '[train epoch:%d] loss: Rec_loss:%.8f DA_loss:%.8f CL_loss:%.8f' % (epoch + 1, rec_loss.item(), da_loss.item(), cl_loss.item()))
        t.refresh()

    logging.info('epoch:%d iteration:%d running_loss:%.10f' % (epoch + 1, batches_done + 1, running_loss / num_train))


    # -----------
    # Validating
    # -----------
    with torch.no_grad():

        net.eval()
        if dataset_name == 'RGB-D-D':
            rmse = np.zeros(405)
        elif dataset_name == 'NYU-v2':
            rmse = np.zeros(449)
        t = tqdm(iter(test_dataloader), leave=True, total=len(test_dataloader))

        for idx, data in enumerate(t):
            if dataset_name == 'RGB-D-D':
                guidance, lr, gt, max, min = data['guidance'].cuda(), data['lr'].cuda(), data['gt'].cuda(), data[
                    'max'].cuda(), data['min'].cuda()
                out = net(x_query=lr, rgb=guidance)
                minmax = [max, min]
                rmse[idx] = rgbdd_calc_rmse(gt[0, 0], out[0, 0], minmax)
                t.set_description('[validate] rmse: %f' % rmse[:idx + 1].mean())
                t.refresh()
            elif dataset_name == 'NYU-v2':
                guidance, lr, gt = data['guidance'].cuda(), data['lr'].cuda(), data['gt'].cuda()
                out = net(x_query=lr, rgb=guidance)
                minmax = test_minmax[:, idx]
                minmax = torch.from_numpy(minmax).cuda()
                rmse[idx] = calc_rmse(gt[0, 0], out[0, 0], minmax)
                t.set_description('[validate] rmse: %f' % rmse[:idx + 1].mean())
                t.refresh()
        r_mean = rmse.mean()
        if r_mean < best_rmse:
            best_rmse = r_mean
            best_epoch = epoch
            torch.save(net.state_dict(),
                       os.path.join(result_root, "RMSE%f_8%d.pth" % (best_rmse, best_epoch + 1)))
        logging.info(
            '---------------------------------------------------------------------------------------------------------------------------')
        logging.info('epoch:%d lr:%f-------mean_rmse:%f (BEST: %f @epoch%d)' % (
            epoch + 1, scheduler.get_last_lr()[0], r_mean, best_rmse, best_epoch + 1))
        logging.info(
            '---------------------------------------------------------------------------------------------------------------------------')