Spaces:
Sleeping
Sleeping
File size: 6,749 Bytes
68c537d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import argparse
from net.dornet import Net
from net.CR import *
from data.rgbdd_dataloader import *
from data.nyu_dataloader import *
from utils import calc_rmse, rgbdd_calc_rmse
from torch.utils.data import Dataset
from torchvision import transforms, utils
import torch
import torch.optim as optim
import torch.nn as nn
from tqdm import tqdm
import logging
from datetime import datetime
import os
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument('--scale', type=int, default=4, help='scale factor')
parser.add_argument('--lr', default='0.0001', type=float, help='learning rate')
parser.add_argument('--result', default='experiment', help='learning rate')
parser.add_argument('--tiny_model', action='store_true', help='tiny model')
parser.add_argument('--epoch', default=300, type=int, help='max epoch')
parser.add_argument("--decay_iterations", type=list, default=[1.2e5, 2e5, 3.6e5],
help="steps to start lr decay")
parser.add_argument("--gamma", type=float, default=0.2, help="decay rate of learning rate")
parser.add_argument("--root_dir", type=str, default='./dataset/RGB-D-D', help="root dir of dataset")
parser.add_argument("--batch_size", type=int, default=3, help="batch_size of training dataloader")
parser.add_argument("--blur_sigma", type=int, default=3.6, help="blur_sigma")
parser.add_argument('--isNoisy', action='store_true', help='Noisy')
opt = parser.parse_args()
print(opt)
s = datetime.now().strftime('%Y%m%d%H%M%S')
dataset_name = opt.root_dir.split('/')[-1]
result_root = '%s/%s-lr_%s-s_%s-%s-b_%s' % (opt.result, s, opt.lr, opt.scale, dataset_name, opt.batch_size)
if not os.path.exists(result_root):
os.mkdir(result_root)
logging.basicConfig(filename='%s/train.log' % result_root, format='%(asctime)s %(message)s', level=logging.INFO)
logging.info(opt)
net = Net(tiny_model=opt.tiny_model).cuda()
print("**********************Parameters***********************")
print(sum(p.numel() for p in net.parameters() if p.requires_grad))
print("**********************Parameters***********************")
net.train()
optimizer = optim.Adam(net.parameters(), lr=opt.lr)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=opt.decay_iterations, gamma=opt.gamma)
CL = ContrastLoss(ablation=False)
l1 = nn.L1Loss().cuda()
data_transform = transforms.Compose([transforms.ToTensor()])
if dataset_name == 'RGB-D-D':
train_dataset = RGBDD_Dataset(root_dir=opt.root_dir, scale=opt.scale, downsample='real', train=True,
transform=data_transform, isNoisy=opt.isNoisy, blur_sigma=opt.blur_sigma)
test_dataset = RGBDD_Dataset(root_dir=opt.root_dir, scale=opt.scale, downsample='real', train=False,
transform=data_transform, isNoisy=opt.isNoisy, blur_sigma=opt.blur_sigma)
elif dataset_name == 'NYU-v2':
test_minmax = np.load('%s/test_minmax.npy' % opt.root_dir)
train_dataset = NYU_v2_datset(root_dir=opt.root_dir, scale=opt.scale, transform=data_transform, train=True)
test_dataset = NYU_v2_datset(root_dir=opt.root_dir, scale=opt.scale, transform=data_transform, train=False)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=8)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=8)
max_epoch = opt.epoch
num_train = len(train_dataloader)
best_rmse = 100.0
best_epoch = 0
for epoch in range(max_epoch):
# ---------
# Training
# ---------
net.train()
running_loss = 0.0
t = tqdm(iter(train_dataloader), leave=True, total=len(train_dataloader))
for idx, data in enumerate(t):
batches_done = num_train * epoch + idx
optimizer.zero_grad()
guidance, lr, gt = data['guidance'].cuda(), data['lr'].cuda(), data['gt'].cuda()
restored, d_lr_, aux_loss = net(x_query=lr, rgb=guidance)
rec_loss = l1(restored, gt)
da_loss = l1(d_lr_, lr)
cl_loss = CL(d_lr_,lr,restored)
loss = rec_loss + 0.1 * da_loss + 0.1 * cl_loss + aux_loss
loss.backward()
optimizer.step()
scheduler.step()
running_loss += loss.data.item()
t.set_description(
'[train epoch:%d] loss: Rec_loss:%.8f DA_loss:%.8f CL_loss:%.8f' % (epoch + 1, rec_loss.item(), da_loss.item(), cl_loss.item()))
t.refresh()
logging.info('epoch:%d iteration:%d running_loss:%.10f' % (epoch + 1, batches_done + 1, running_loss / num_train))
# -----------
# Validating
# -----------
with torch.no_grad():
net.eval()
if dataset_name == 'RGB-D-D':
rmse = np.zeros(405)
elif dataset_name == 'NYU-v2':
rmse = np.zeros(449)
t = tqdm(iter(test_dataloader), leave=True, total=len(test_dataloader))
for idx, data in enumerate(t):
if dataset_name == 'RGB-D-D':
guidance, lr, gt, max, min = data['guidance'].cuda(), data['lr'].cuda(), data['gt'].cuda(), data[
'max'].cuda(), data['min'].cuda()
out = net(x_query=lr, rgb=guidance)
minmax = [max, min]
rmse[idx] = rgbdd_calc_rmse(gt[0, 0], out[0, 0], minmax)
t.set_description('[validate] rmse: %f' % rmse[:idx + 1].mean())
t.refresh()
elif dataset_name == 'NYU-v2':
guidance, lr, gt = data['guidance'].cuda(), data['lr'].cuda(), data['gt'].cuda()
out = net(x_query=lr, rgb=guidance)
minmax = test_minmax[:, idx]
minmax = torch.from_numpy(minmax).cuda()
rmse[idx] = calc_rmse(gt[0, 0], out[0, 0], minmax)
t.set_description('[validate] rmse: %f' % rmse[:idx + 1].mean())
t.refresh()
r_mean = rmse.mean()
if r_mean < best_rmse:
best_rmse = r_mean
best_epoch = epoch
torch.save(net.state_dict(),
os.path.join(result_root, "RMSE%f_8%d.pth" % (best_rmse, best_epoch + 1)))
logging.info(
'---------------------------------------------------------------------------------------------------------------------------')
logging.info('epoch:%d lr:%f-------mean_rmse:%f (BEST: %f @epoch%d)' % (
epoch + 1, scheduler.get_last_lr()[0], r_mean, best_rmse, best_epoch + 1))
logging.info(
'---------------------------------------------------------------------------------------------------------------------------')
|