Spaces:
Sleeping
Sleeping
File size: 6,868 Bytes
68c537d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import argparse
from net.dornet_ddp import Net
from data.tofsr_dataloader import *
from utils import tofdsr_calc_rmse
from torch.utils.data import Dataset, DataLoader
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms, utils
import torch.optim as optim
import random
from net.CR import *
from tqdm import tqdm
import logging
from datetime import datetime
import os
parser = argparse.ArgumentParser()
parser.add_argument("--local-rank", default=-1, type=int)
parser.add_argument('--scale', type=int, default=4, help='scale factor')
parser.add_argument('--lr', default='0.0002', type=float, help='learning rate') # 0.0001
parser.add_argument('--tiny_model', action='store_true', help='tiny model')
parser.add_argument('--epoch', default=300, type=int, help='max epoch')
parser.add_argument('--device', default="0,1", type=str, help='which gpu use')
parser.add_argument("--decay_iterations", type=list, default=[1.2e5, 2e5, 3.6e5],
help="steps to start lr decay")
parser.add_argument("--gamma", type=float, default=0.2, help="decay rate of learning rate")
parser.add_argument("--root_dir", type=str, default='./dataset/TOFDSR', help="root dir of dataset")
parser.add_argument("--batchsize", type=int, default=3, help="batchsize of training dataloader")
parser.add_argument("--num_gpus", type=int, default=2, help="num_gpus")
parser.add_argument('--seed', type=int, default=7240, help='random seed point')
parser.add_argument("--result_root", type=str, default='experiment/TOFDSR', help="root dir of dataset")
parser.add_argument("--blur_sigma", type=int, default=3.6, help="blur_sigma")
parser.add_argument('--isNoisy', action='store_true', help='Noisy')
opt = parser.parse_args()
print(opt)
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
torch.manual_seed(opt.seed)
np.random.seed(opt.seed)
random.seed(opt.seed)
torch.cuda.manual_seed_all(opt.seed)
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl')
device = torch.device("cuda", local_rank)
s = datetime.now().strftime('%Y%m%d%H%M%S')
dataset_name = opt.root_dir.split('/')[-1]
rank = dist.get_rank()
logging.basicConfig(filename='%s/train.log' % opt.result_root, format='%(asctime)s %(message)s', level=logging.INFO)
logging.info(opt)
net = Net(tiny_model=opt.tiny_model).cuda()
data_transform = transforms.Compose([transforms.ToTensor()])
train_dataset = TOFDSR_Dataset(root_dir=opt.root_dir, train=True, txt_file="./data/TOFDSR_Train.txt", transform=data_transform,
isNoisy=opt.isNoisy, blur_sigma=opt.blur_sigma)
test_dataset = TOFDSR_Dataset(root_dir=opt.root_dir, train=False, txt_file="./data/TOFDSR_Test.txt", transform=data_transform,
isNoisy=opt.isNoisy, blur_sigma=opt.blur_sigma)
if torch.cuda.device_count() > 1:
train_sampler = DistributedSampler(dataset=train_dataset)
train_dataloader = DataLoader(train_dataset, batch_size=opt.batchsize, shuffle=False, pin_memory=True, num_workers=8,
drop_last=True, sampler=train_sampler)
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False, pin_memory=True, num_workers=8)
net = DistributedDataParallel(net, device_ids=[local_rank], output_device=int(local_rank), find_unused_parameters=True)
l1 = nn.L1Loss().to(device)
optimizer = optim.Adam(net.module.parameters(), lr=opt.lr)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=opt.decay_iterations, gamma=opt.gamma)
net.train()
max_epoch = opt.epoch
num_train = len(train_dataloader)
best_rmse = 100.0
best_epoch = 0
for epoch in range(max_epoch):
# ---------
# Training
# ---------
train_sampler.set_epoch(epoch)
net.train()
running_loss = 0.0
t = tqdm(iter(train_dataloader), leave=True, total=len(train_dataloader))
for idx, data in enumerate(t):
batches_done = num_train * epoch + idx
optimizer.zero_grad()
guidance, lr, gt = data['guidance'].to(device), data['lr'].to(device), data['gt'].to(device)
restored, d_lr_, aux_loss, cl_loss = net(x_query=lr, rgb=guidance)
mask = (gt >= 0.02) & (gt <= 1)
gt = gt[mask]
restored = restored[mask]
lr = lr[mask]
d_lr_ = d_lr_[mask]
rec_loss = l1(restored, gt)
da_loss = l1(d_lr_, lr)
loss = rec_loss + 0.1 * da_loss + 0.1 * cl_loss + aux_loss
loss.backward()
optimizer.step()
scheduler.step()
running_loss += loss.data.item()
running_loss_50 = running_loss
if idx % 50 == 0:
running_loss_50 /= 50
t.set_description(
'[train epoch:%d] loss: Rec_loss:%.8f DA_loss:%.8f CL_loss:%.8f' % (
epoch + 1, rec_loss.item(), da_loss.item(), cl_loss.item()))
t.refresh()
logging.info('epoch:%d iteration:%d running_loss:%.10f' % (epoch + 1, batches_done + 1, running_loss / num_train))
# -----------
# Validating
# -----------
if rank == 0:
with torch.no_grad():
net.eval()
rmse = np.zeros(560)
t = tqdm(iter(test_dataloader), leave=True, total=len(test_dataloader))
for idx, data in enumerate(t):
guidance, lr, gt, maxx, minn = data['guidance'].to(device), data['lr'].to(device), data['gt'].to(
device), data[
'max'].to(device), data['min'].to(device)
out, _ = net.module.srn(x_query=lr, rgb=guidance)
minmax = [maxx, minn]
rmse[idx] = tofdsr_calc_rmse(gt[0, 0], out[0, 0], minmax)
t.set_description('[validate] rmse: %f' % rmse[:idx + 1].mean())
t.refresh()
r_mean = rmse.mean()
if r_mean < best_rmse:
best_rmse = r_mean
best_epoch = epoch
torch.save(net.module.srn.state_dict(),
os.path.join(opt.result_root, "RMSE%f_8%d.pth" % (best_rmse, best_epoch + 1)))
logging.info(
'---------------------------------------------------------------------------------------------------------------------------')
logging.info('epoch:%d lr:%f-------mean_rmse:%f (BEST: %f @epoch%d)' % (
epoch + 1, scheduler.get_last_lr()[0], r_mean, best_rmse, best_epoch + 1))
logging.info(
'---------------------------------------------------------------------------------------------------------------------------')
|