DORNet / data /tofdc_dataloader.py
RaynWu2002's picture
Upload 49 files
68c537d verified
import numpy as np
import os
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from scipy.ndimage import gaussian_filter
class TOFDSR_Dataset(Dataset):
def __init__(self, root_dir="./dataset/", scale=4, downsample='real', train=True, txt_file='./TOFDSR_Train.txt' ,
transform=None, isNoisy=False, blur_sigma=1.2):
self.root_dir = root_dir
self.transform = transform
self.scale = scale
self.downsample = downsample
self.train = train
self.isNoisy = isNoisy
self.blur_sigma = blur_sigma
self.image_list = txt_file
with open(self.image_list, 'r') as f:
self.filename = f.readlines()
def __len__(self):
return len(self.filename)
def __getitem__(self, idx):
sample_path = self.filename[idx].strip('\n')
sample_path_ = sample_path.split(',')
rgb_path = sample_path_[0]
gt_path = sample_path_[1]
lr_path = sample_path_[2]
name = gt_path[20:-4]
rgb_path = os.path.join(self.root_dir, rgb_path)
gt_path = os.path.join(self.root_dir, gt_path)
lr_path = os.path.join(self.root_dir, lr_path)
if self.downsample == 'real':
image = np.array(Image.open(rgb_path).convert("RGB")).astype(np.float32)
gt = np.array(Image.open(gt_path)).astype(np.float32)
h, w = gt.shape
lr = np.array(Image.open(lr_path).resize((w, h), Image.BICUBIC)).astype(np.float32)
else:
image = np.array(Image.open(rgb_path).convert("RGB")).astype(np.float32)
gt = Image.open(gt_path)
w, h = gt.size
lr = np.array(gt.resize((w, h), Image.BICUBIC)).astype(np.float32)
gt = np.array(gt).astype(np.float32)
image_max = np.max(image)
image_min = np.min(image)
image = (image - image_min) / (image_max - image_min)
# normalization
if self.train:
max_out = 5000.0
min_out = 0.0
lr = (lr - min_out) / (max_out - min_out)
gt = (gt-min_out)/(max_out-min_out)
else:
max_out = 5000.0
min_out = 0.0
lr = (lr - min_out) / (max_out - min_out)
lr_minn = np.min(lr)
lr_maxx = np.max(lr)
if not self.train:
np.random.seed(42)
if self.isNoisy:
lr = gaussian_filter(lr, sigma=self.blur_sigma)
gaussian_noise = np.random.normal(0, 0.07, lr.shape)
lr = lr + gaussian_noise
lr = np.clip(lr, lr_minn, lr_maxx)
if self.transform:
image = self.transform(image).float()
gt = self.transform(np.expand_dims(gt, 2)).float()
lr = self.transform(np.expand_dims(lr, 2)).float()
sample = {'guidance': image, 'lr': lr, 'gt': gt, 'max': max_out, 'min': min_out,'name': name}
return sample