DORNet / net /dornet_ddp.py
RaynWu2002's picture
Upload 49 files
68c537d verified
import torch
import torch.nn as nn
from .deform_conv import DCN_layer_rgb
import torch.nn.functional as F
import math
from net.CR import *
from torch.distributions.normal import Normal
import numpy as np
class SparseDispatcher(object):
"""Helper for implementing a mixture of experts.
The purpose of this class is to create input minibatches for the
experts and to combine the results of the experts to form a unified
output tensor.
There are two functions:
dispatch - take an input Tensor and create input Tensors for each expert.
combine - take output Tensors from each expert and form a combined output
Tensor. Outputs from different experts for the same batch element are
summed together, weighted by the provided "gates".
The class is initialized with a "gates" Tensor, which specifies which
batch elements go to which experts, and the weights to use when combining
the outputs. Batch element b is sent to expert e iff gates[b, e] != 0.
The inputs and outputs are all two-dimensional [batch, depth].
Caller is responsible for collapsing additional dimensions prior to
calling this class and reshaping the output to the original shape.
See common_layers.reshape_like().
Example use:
gates: a float32 `Tensor` with shape `[batch_size, num_experts]`
inputs: a float32 `Tensor` with shape `[batch_size, input_size]`
experts: a list of length `num_experts` containing sub-networks.
dispatcher = SparseDispatcher(num_experts, gates)
expert_inputs = dispatcher.dispatch(inputs)
expert_outputs = [experts[i](expert_inputs[i]) for i in range(num_experts)]
outputs = dispatcher.combine(expert_outputs)
The preceding code sets the output for a particular example b to:
output[b] = Sum_i(gates[b, i] * experts[i](inputs[b]))
This class takes advantage of sparsity in the gate matrix by including in the
`Tensor`s for expert i only the batch elements for which `gates[b, i] > 0`.
"""
def __init__(self, num_experts, gates):
"""Create a SparseDispatcher."""
self._gates = gates
self._num_experts = num_experts
# sort experts
sorted_experts, index_sorted_experts = torch.nonzero(gates).sort(0)
# drop indices
_, self._expert_index = sorted_experts.split(1, dim=1)
# get according batch index for each expert
self._batch_index = torch.nonzero(gates)[index_sorted_experts[:, 1], 0]
# calculate num samples that each expert gets
self._part_sizes = (gates > 0).sum(0).tolist()
# expand gates to match with self._batch_index
gates_exp = gates[self._batch_index.flatten()]
self._nonzero_gates = torch.gather(gates_exp, 1, self._expert_index)
def dispatch(self, D_Kernel, index_1):
b, c = D_Kernel.shape
D_Kernel_exp = D_Kernel[self._batch_index]
list1 = torch.zeros((1, self._num_experts))
list1[0, index_1] = b
return torch.split(D_Kernel_exp, list1[0].int().tolist(), dim=0)
def combine(self, expert_out, multiply_by_gates=True):
stitched = torch.cat(expert_out, 0).exp()
if multiply_by_gates:
stitched = stitched.mul(self._nonzero_gates.unsqueeze(1).unsqueeze(1))
zeros = torch.zeros(
(self._gates.size(0), expert_out[-1].size(1), expert_out[-1].size(2), expert_out[-1].size(3)),
requires_grad=True, device=stitched.device)
combined = zeros.index_add(0, self._batch_index, stitched.float())
# add eps to all zero values in order to avoid nans when going back to log space
combined[combined == 0] = np.finfo(float).eps
# back to log space
return combined.log()
def expert_to_gates(self):
"""Gate values corresponding to the examples in the per-expert `Tensor`s.
Returns:
a list of `num_experts` one-dimensional `Tensor`s with type `tf.float32`
and shapes `[expert_batch_size_i]`
"""
# split nonzero gates for each expert
return torch.split(self._nonzero_gates, self._part_sizes, dim=0)
class DecMoE(nn.Module):
"""Call a Sparsely gated mixture of experts layer with 1-layer Feed-Forward networks as experts.
Args:
input_size: integer - size of the input
output_size: integer - size of the input
num_experts: an integer - number of experts
hidden_size: an integer - hidden size of the experts
noisy_gating: a boolean
k: an integer - how many experts to use for each batch element
"""
def __init__(self, ds_inputsize, input_size, output_size, num_experts, hidden_size, noisy_gating=True, k=2,
trainingmode=True):
super(DecMoE, self).__init__()
self.noisy_gating = noisy_gating
self.num_experts = num_experts
self.output_size = output_size
self.input_size = input_size
self.hidden_size = hidden_size
self.training = trainingmode
self.k = k
# instantiate experts
self.experts = nn.ModuleList(
[generateKernel(hidden_size, 3), generateKernel(hidden_size, 5), generateKernel(hidden_size, 7),
generateKernel(hidden_size, 9)])
self.w_gate = nn.Parameter(torch.zeros(ds_inputsize, num_experts), requires_grad=True)
self.w_noise = nn.Parameter(torch.zeros(ds_inputsize, num_experts), requires_grad=True)
self.softplus = nn.Softplus()
self.softmax = nn.Softmax(1)
self.register_buffer("mean", torch.tensor([0.0]))
self.register_buffer("std", torch.tensor([1.0]))
assert (self.k <= self.num_experts)
def cv_squared(self, x):
"""The squared coefficient of variation of a sample.
Useful as a loss to encourage a positive distribution to be more uniform.
Epsilons added for numerical stability.
Returns 0 for an empty Tensor.
Args:
x: a `Tensor`.
Returns:
a `Scalar`.
"""
eps = 1e-10
# if only num_experts = 1
if x.shape[0] == 1:
return torch.tensor([0], device=x.device, dtype=x.dtype)
return x.float().var() / (x.float().mean() ** 2 + eps)
def _gates_to_load(self, gates):
"""Compute the true load per expert, given the gates.
The load is the number of examples for which the corresponding gate is >0.
Args:
gates: a `Tensor` of shape [batch_size, n]
Returns:
a float32 `Tensor` of shape [n]
"""
return (gates > 0).sum(0)
def _prob_in_top_k(self, clean_values, noisy_values, noise_stddev, noisy_top_values):
"""Helper function to NoisyTopKGating.
Computes the probability that value is in top k, given different random noise.
This gives us a way of backpropagating from a loss that balances the number
of times each expert is in the top k experts per example.
In the case of no noise, pass in None for noise_stddev, and the result will
not be differentiable.
Args:
clean_values: a `Tensor` of shape [batch, n].
noisy_values: a `Tensor` of shape [batch, n]. Equal to clean values plus
normally distributed noise with standard deviation noise_stddev.
noise_stddev: a `Tensor` of shape [batch, n], or None
noisy_top_values: a `Tensor` of shape [batch, m].
"values" Output of tf.top_k(noisy_top_values, m). m >= k+1
Returns:
a `Tensor` of shape [batch, n].
"""
batch = clean_values.size(0)
m = noisy_top_values.size(1)
top_values_flat = noisy_top_values.flatten()
threshold_positions_if_in = torch.arange(batch, device=clean_values.device) * m + self.k
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
is_in = torch.gt(noisy_values, threshold_if_in)
threshold_positions_if_out = threshold_positions_if_in - 1
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_out), 1)
# is each value currently in the top k.
normal = Normal(self.mean, self.std)
prob_if_in = normal.cdf((clean_values - threshold_if_in) / noise_stddev)
prob_if_out = normal.cdf((clean_values - threshold_if_out) / noise_stddev)
prob = torch.where(is_in, prob_if_in, prob_if_out)
return prob
def noisy_top_k_gating(self, x, train, noise_epsilon=1e-2):
"""Noisy top-k gating.
See paper: https://arxiv.org/abs/1701.06538.
Args:
x: input Tensor with shape [batch_size, input_size]
train: a boolean - we only add noise at training time.
noise_epsilon: a float
Returns:
gates: a Tensor with shape [batch_size, num_experts]
load: a Tensor with shape [num_experts]
"""
clean_logits = x @ self.w_gate
if self.noisy_gating and train:
raw_noise_stddev = x @ self.w_noise
noise_stddev = ((self.softplus(raw_noise_stddev) + noise_epsilon))
noisy_logits = clean_logits + (torch.randn_like(clean_logits) * noise_stddev)
logits = noisy_logits
else:
logits = clean_logits
# calculate topk + 1 that will be needed for the noisy gates
top_logits, top_indices = logits.topk(min(self.k + 1, self.num_experts), dim=1)
top_k_logits = top_logits[:, :self.k]
top_k_indices = top_indices[:, :self.k]
top_k_gates = self.softmax(top_k_logits)
zeros = torch.zeros_like(logits, requires_grad=True)
gates = zeros.scatter(1, top_k_indices, top_k_gates)
if self.noisy_gating and self.k < self.num_experts and train:
load = (self._prob_in_top_k(clean_logits, noisy_logits, noise_stddev, top_logits)).sum(0)
else:
load = self._gates_to_load(gates)
return gates, load, top_k_indices[0]
def forward(self, x_ds, D_Kernel, loss_coef=1e-2):
gates, load, index_1 = self.noisy_top_k_gating(x_ds, self.training)
# calculate importance loss
importance = gates.sum(0)
loss = self.cv_squared(importance) + self.cv_squared(load)
loss *= loss_coef
dispatcher = SparseDispatcher(self.num_experts, gates)
expert_kernel = dispatcher.dispatch(D_Kernel, index_1)
expert_outputs = [self.experts[i](expert_kernel[i]) for i in range(self.num_experts)]
return expert_outputs, loss
def default_conv(in_channels, out_channels, kernel_size, bias=True):
return nn.Conv2d(in_channels, out_channels, kernel_size, padding=(kernel_size // 2), bias=bias)
class CALayer(nn.Module):
def __init__(self, channel, reduction=16):
super(CALayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv_du = nn.Sequential(
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),
nn.Sigmoid()
)
def forward(self, x):
y = self.avg_pool(x)
y = self.conv_du(y)
return x * y
class RCAB(nn.Module):
def __init__(
self, conv, n_feat, kernel_size, reduction,
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
super(RCAB, self).__init__()
modules_body = []
for i in range(2):
modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias))
if bn: modules_body.append(nn.BatchNorm2d(n_feat))
if i == 0: modules_body.append(act)
modules_body.append(CALayer(n_feat, reduction))
self.body = nn.Sequential(*modules_body)
self.res_scale = res_scale
def forward(self, x):
res = self.body(x)
res += x
return res
class ResidualGroup(nn.Module):
def __init__(self, conv, n_feat, kernel_size, reduction, n_resblocks):
super(ResidualGroup, self).__init__()
modules_body = []
modules_body = [
RCAB(
conv, n_feat, kernel_size, reduction, bias=True, bn=False,
act=nn.LeakyReLU(negative_slope=0.2, inplace=True), res_scale=1) \
for _ in range(n_resblocks)]
modules_body.append(conv(n_feat, n_feat, kernel_size))
self.body = nn.Sequential(*modules_body)
def forward(self, x):
res = self.body(x)
res += x
return res
class ResBlock(nn.Module):
def __init__(self, in_feat, out_feat, stride=1):
super(ResBlock, self).__init__()
self.backbone = nn.Sequential(
nn.Conv2d(in_feat, out_feat, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(out_feat),
nn.LeakyReLU(0.1, True),
nn.Conv2d(out_feat, out_feat, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_feat),
)
self.shortcut = nn.Sequential(
nn.Conv2d(in_feat, out_feat, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_feat)
)
def forward(self, x):
return nn.LeakyReLU(0.1, True)(self.backbone(x) + self.shortcut(x))
class DaEncoder(nn.Module):
def __init__(self, nfeats):
super(DaEncoder, self).__init__()
self.E_pre = nn.Sequential(
ResBlock(in_feat=1, out_feat=nfeats // 2, stride=1),
ResBlock(in_feat=nfeats // 2, out_feat=nfeats, stride=1),
ResBlock(in_feat=nfeats, out_feat=nfeats, stride=1)
)
self.E = nn.Sequential(
nn.Conv2d(nfeats, nfeats * 2, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(nfeats * 2),
nn.LeakyReLU(0.1, True),
nn.Conv2d(nfeats * 2, nfeats * 4, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(nfeats * 4),
nn.AdaptiveAvgPool2d(1)
)
def forward(self, x):
inter = self.E_pre(x)
fea = self.E(inter)
out = fea.squeeze(-1).squeeze(-1)
return fea, out, inter
class generateKernel(nn.Module):
def __init__(self, nfeats, kernel_size=5):
super(generateKernel, self).__init__()
self.mlp = nn.Sequential(
nn.Linear(nfeats * 4, nfeats),
nn.LeakyReLU(0.1, True),
nn.Linear(nfeats, kernel_size * kernel_size)
)
def forward(self, D_Kernel):
D_Kernel = self.mlp(D_Kernel)
return D_Kernel
class DAB(nn.Module):
def __init__(self):
super(DAB, self).__init__()
self.relu = nn.LeakyReLU(0.1, True)
self.conv = default_conv(1, 1, 1)
def forward(self, x, D_Kernel):
b, c, h, w = x.size()
b1, l = D_Kernel.shape
kernel_size = int(math.sqrt(l))
with torch.no_grad():
kernel = D_Kernel.view(-1, 1, kernel_size, kernel_size)
out = F.conv2d(x.view(1, -1, h, w), kernel, groups=b * c, padding=(kernel_size - 1) // 2)
out = out.view(b, -1, h, w)
out = self.conv(self.relu(out).view(b, -1, h, w))
return out
class DR(nn.Module):
def __init__(self, nfeats, num_experts=4, k=3):
super(DR, self).__init__()
self.topK = k
self.num_experts = num_experts
self.start_idx = num_experts - k
self.c1 = ResBlock(in_feat=1, out_feat=nfeats, stride=1)
self.gap = nn.AdaptiveMaxPool2d(1)
self.gap2 = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(nfeats, nfeats * 4)
self.dab = [DAB(), DAB(), DAB()]
self.dab_list = nn.ModuleList(self.dab)
self.DecoderMoE = DecMoE(ds_inputsize=nfeats * 4, input_size=1, output_size=1, num_experts=num_experts,
hidden_size=nfeats,
noisy_gating=True, k=k, trainingmode=True)
self.conv = default_conv(1, 1, 1)
def forward(self, lr, sr, D_Kernel):
y1 = F.interpolate(lr, scale_factor=0.125, mode='bicubic', align_corners=True,
recompute_scale_factor=True)
y2 = self.c1(y1)
y3 = self.gap(y2) + self.gap2(y2)
y4 = y3.view(y3.shape[0], -1)
y5 = self.fc1(y4)
D_Kernel_list, aux_loss = self.DecoderMoE(y5, D_Kernel, loss_coef=0.02)
sorted_D_Kernel_list = sorted(D_Kernel_list, key=lambda x: (x.size(0), x.size(1)))
sum_result = None
for iidx in range(self.start_idx, self.num_experts):
res_d = self.dab_list[iidx - self.start_idx](sr, sorted_D_Kernel_list[iidx])
if sum_result is None:
sum_result = res_d
else:
sum_result += res_d
out = self.conv(sum_result)
return out, aux_loss
class DA_rgb(nn.Module):
def __init__(self, channels_in, channels_out, kernel_size, reduction):
super(DA_rgb, self).__init__()
self.kernel_size = kernel_size
self.channels_out = channels_out
self.channels_in = channels_in
self.dcnrgb = DCN_layer_rgb(self.channels_in, self.channels_out, kernel_size,
padding=(kernel_size - 1) // 2, bias=False)
self.rcab1 = RCAB(default_conv, channels_out, 3, reduction)
self.relu = nn.LeakyReLU(0.1, True)
self.conv = default_conv(channels_in, channels_out, 3)
def forward(self, x, inter, fea):
out1 = self.rcab1(x)
out2 = self.dcnrgb(out1, inter, fea)
out = self.conv(out2 + out1)
return out
class FusionBlock(nn.Module):
def __init__(self, channels_in, channels_out):
super(FusionBlock, self).__init__()
self.conv1 = default_conv(channels_in, channels_in // 4, 1)
self.conv2 = default_conv(channels_in, channels_in // 4, 1)
self.conv3 = default_conv(channels_in // 4, channels_in, 1)
self.sigmoid = nn.Sigmoid()
self.conv = default_conv(2 * channels_in, channels_out, 3)
def forward(self, rgb, dep, inter):
inter1 = self.conv1(inter)
rgb1 = self.conv2(rgb)
w = torch.sigmoid(inter1)
rgb2 = rgb1 * w
rgb3 = self.conv3(rgb2) + rgb
cat1 = torch.cat([rgb3, dep], dim=1)
out = self.conv(cat1)
return out
class DOFT(nn.Module):
def __init__(self, channels_in, channels_out, kernel_size, reduction):
super(DOFT, self).__init__()
self.channels_out = channels_out
self.channels_in = channels_in
self.kernel_size = kernel_size
self.DA_rgb = DA_rgb(channels_in, channels_out, kernel_size, reduction)
self.fb = FusionBlock(channels_in, channels_out)
self.relu = nn.LeakyReLU(0.1, True)
def forward(self, x, inter, rgb, fea):
rgb = self.DA_rgb(rgb, inter, fea)
out1 = self.fb(rgb, x, inter)
out = x + out1
return out
class DSRN(nn.Module):
def __init__(self, nfeats=64, reduction=16, conv=default_conv):
super(DSRN, self).__init__()
kernel_size = 3
n_feats = nfeats
# head module
modules_head = [conv(1, n_feats, kernel_size)]
self.head = nn.Sequential(*modules_head)
modules_head_rgb = [conv(3, n_feats, kernel_size)]
self.head_rgb = nn.Sequential(*modules_head_rgb)
self.dgm1 = DOFT(n_feats, n_feats, 3, reduction)
self.dgm2 = DOFT(n_feats, n_feats, 3, reduction)
self.dgm3 = DOFT(n_feats, n_feats, 3, reduction)
self.dgm4 = DOFT(n_feats, n_feats, 3, reduction)
self.dgm5 = DOFT(n_feats, n_feats, 3, reduction)
self.c_d1 = ResidualGroup(conv, n_feats, 3, reduction=reduction, n_resblocks=2)
self.c_d2 = ResidualGroup(conv, n_feats, 3, reduction=reduction, n_resblocks=2)
self.c_d3 = ResidualGroup(conv, n_feats, 3, reduction=reduction, n_resblocks=2)
self.c_d4 = ResidualGroup(conv, n_feats, 3, reduction=reduction, n_resblocks=2)
modules_d5 = [conv(5 * n_feats, n_feats, 1),
ResidualGroup(conv, n_feats, 3, reduction=reduction, n_resblocks=2)]
self.c_d5 = nn.Sequential(*modules_d5)
self.c_r1 = conv(n_feats, n_feats, kernel_size)
self.c_r2 = conv(n_feats, n_feats, kernel_size)
self.c_r3 = conv(n_feats, n_feats, kernel_size)
self.c_r4 = conv(n_feats, n_feats, kernel_size)
self.act = nn.LeakyReLU(0.1, True)
# tail
modules_tail = [conv(n_feats, 1, kernel_size)]
self.tail = nn.Sequential(*modules_tail)
def forward(self, x, inter, rgb, fea):
# head
x = self.head(x)
rgb = self.head_rgb(rgb)
rgb1 = self.c_r1(rgb)
rgb2 = self.c_r2(self.act(rgb1))
rgb3 = self.c_r3(self.act(rgb2))
rgb4 = self.c_r4(self.act(rgb3))
dep10 = self.dgm1(x, inter, rgb, fea)
dep1 = self.c_d1(dep10)
dep20 = self.dgm2(dep1, inter, rgb1, fea)
dep2 = self.c_d2(self.act(dep20))
dep30 = self.dgm3(dep2, inter, rgb2, fea)
dep3 = self.c_d3(self.act(dep30))
dep40 = self.dgm4(dep3, inter, rgb3, fea)
dep4 = self.c_d4(self.act(dep40))
dep50 = self.dgm5(dep4, inter, rgb4, fea)
cat1 = torch.cat([dep1, dep2, dep3, dep4, dep50], dim=1)
dep6 = self.c_d5(cat1)
res = dep6 + x
out = self.tail(res)
return out
class SRN(nn.Module):
def __init__(self, nfeats, reduction):
super(SRN, self).__init__()
# Restorer
self.R = DSRN(nfeats=nfeats, reduction=reduction)
# Encoder
self.Enc = DaEncoder(nfeats=nfeats)
def forward(self, x_query, rgb):
fea, d_kernel, inter = self.Enc(x_query)
restored = self.R(x_query, inter, rgb, fea)
return restored, d_kernel
class Net_ddp(nn.Module):
def __init__(self, tiny_model=False):
super(Net_ddp, self).__init__()
if tiny_model:
n_feats = 24
reduction = 4
else:
n_feats = 64
reduction = 16
self.srn = SRN(nfeats=n_feats, reduction=reduction)
self.Dab = DR(nfeats=n_feats)
self.CLLoss = ContrastLoss(ablation=False)
def forward(self, x_query, rgb):
restored, d_kernel = self.srn(x_query, rgb)
d_lr_, aux_loss = self.Dab(x_query,restored, d_kernel)
CLLoss1 = self.CLLoss(d_lr_, x_query, restored)
return restored, d_lr_, aux_loss, CLLoss1