Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load the saved model and scaler
|
6 |
+
model = joblib.load('best_random_forest_model.pkl')
|
7 |
+
scaler = joblib.load('scaler.pkl')
|
8 |
+
|
9 |
+
def predict_house_price(feature1, feature2, feature3, feature4, feature5):
|
10 |
+
# Combine all features into a single list
|
11 |
+
features = [feature1, feature2, feature3, feature4, feature5]
|
12 |
+
|
13 |
+
# Scale the input features using the saved scaler
|
14 |
+
scaled_features = scaler.transform([features])
|
15 |
+
|
16 |
+
# Make predictions using the loaded model
|
17 |
+
prediction = model.predict(scaled_features)
|
18 |
+
|
19 |
+
return f"Predicted House Price: ${prediction[0]:,.2f}"
|
20 |
+
|
21 |
+
# Create the Gradio interface
|
22 |
+
interface = gr.Interface(
|
23 |
+
fn=predict_house_price,
|
24 |
+
inputs=[
|
25 |
+
gr.Number(label="Feature 1: (e.g., Average number of rooms per dwelling)"),
|
26 |
+
gr.Number(label="Feature 2: (e.g., Total rooms)"),
|
27 |
+
gr.Number(label="Feature 3: (e.g., Total bedrooms)"),
|
28 |
+
gr.Number(label="Feature 4: (e.g., Median age of houses)"),
|
29 |
+
gr.Number(label="Feature 5: (e.g., Population)"),
|
30 |
+
],
|
31 |
+
outputs=gr.Textbox(label="Predicted House Price"),
|
32 |
+
description="Predict California house prices based on input features.",
|
33 |
+
title="California House Price Predictor"
|
34 |
+
)
|
35 |
+
|
36 |
+
# Launch the Gradio app
|
37 |
+
interface.launch()
|