Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
# Define the input schema
|
| 6 |
+
class ModelInput(BaseModel):
|
| 7 |
+
prompt: str
|
| 8 |
+
max_new_tokens: int = 50 # Optional: Defaults to 50 tokens
|
| 9 |
+
|
| 10 |
+
# Initialize FastAPI app
|
| 11 |
+
app = FastAPI()
|
| 12 |
+
|
| 13 |
+
# Load your model and tokenizer
|
| 14 |
+
model_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs" # Update with your model directory
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 16 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 17 |
+
|
| 18 |
+
# Initialize the pipeline
|
| 19 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 20 |
+
|
| 21 |
+
@app.post("/generate")
|
| 22 |
+
def generate_text(input: ModelInput):
|
| 23 |
+
try:
|
| 24 |
+
result = generator(
|
| 25 |
+
input.prompt,
|
| 26 |
+
max_new_tokens=input.max_new_tokens,
|
| 27 |
+
return_full_text=False,
|
| 28 |
+
)
|
| 29 |
+
return {"generated_text": result[0]["generated_text"]}
|
| 30 |
+
except Exception as e:
|
| 31 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 32 |
+
|
| 33 |
+
@app.get("/")
|
| 34 |
+
def root():
|
| 35 |
+
return {"message": "Welcome to the Hugging Face Model API!"}
|