Spaces:
Runtime error
Runtime error
import spacy | |
import gradio as gr | |
from transformers import pipeline, AutoTokenizer | |
from pysentimiento.preprocessing import preprocess_tweet | |
nlp = spacy.load("en_core_web_sm") | |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base", add_prefix_space=True, model_max_length=512) | |
pl = pipeline("ner", tokenizer=tokenizer, model="Recognai/veganuary_ner", aggregation_strategy="first") | |
def ner(text): | |
text = preprocess_tweet(text) | |
doc = nlp(text) | |
text = " ".join([token.text for token in doc]) | |
predictions = pl(text) | |
mentions = [pred["word"].strip() for pred in predictions if pred["entity_group"] == "FOOD"] | |
return "\n".join(mentions) | |
iface = gr.Interface( | |
ner, | |
gr.inputs.Textbox(placeholder="copy&paste your veganuary tweet here ...", label="Tweet"), | |
gr.outputs.Textbox(label="List of detected food mentions in the tweet"), | |
examples=[ | |
["Fruit is delicious π AND healthy π₯! Brighten up your plate & palate with fresh watermelon, Greek yoghurt & berries, smashed avocado or lime added to water. A piece of #fruit a day keeps the doctor away! #Veganuary2022"] | |
], | |
allow_flagging=False, | |
title="Veganuary NER", | |
description="Extract food entities from veganuary tweets π", | |
) | |
iface.launch(share=False) |