Rerandaka commited on
Commit
5423fc0
·
verified ·
1 Parent(s): aaf4f58

update the repo name

Browse files
Files changed (1) hide show
  1. app.py +43 -43
app.py CHANGED
@@ -1,43 +1,43 @@
1
- import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
- import torch
4
-
5
- # Load model and tokenizer
6
- model_id = "Rerandaka/child-safety-01"
7
- tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
8
- model = AutoModelForSequenceClassification.from_pretrained(model_id)
9
-
10
- # Class mapping (optional — edit as needed)
11
- label_map = {
12
- 0: "Safe / Normal",
13
- 1: "Inappropriate / Unsafe"
14
- }
15
-
16
- # Inference function
17
- def classify_text(text: str):
18
- inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=256)
19
- with torch.no_grad():
20
- outputs = model(**inputs)
21
- probs = torch.nn.functional.softmax(outputs.logits, dim=1)
22
- predicted = torch.argmax(probs, dim=1).item()
23
- confidence = probs[0][predicted].item()
24
- return {
25
- "label": label_map.get(predicted, str(predicted)),
26
- "confidence": round(confidence, 4)
27
- }
28
-
29
- # Define Gradio Interface
30
- demo = gr.Interface(
31
- fn=classify_text,
32
- inputs=gr.Textbox(label="Enter text to classify"),
33
- outputs=[
34
- gr.Textbox(label="Predicted Label"),
35
- gr.Textbox(label="Confidence")
36
- ],
37
- title="Child-Safety Text Classifier",
38
- description="This model detects if text content is unsafe or inappropriate for children.",
39
- allow_flagging="never"
40
- )
41
-
42
- # Expose API endpoint explicitly
43
- demo.launch(api_name="predict")
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ import torch
4
+
5
+ # Load model and tokenizer
6
+ model_id = "Rerandaka/Cild_safety_bigbird"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
8
+ model = AutoModelForSequenceClassification.from_pretrained(model_id)
9
+
10
+ # Class mapping (optional — edit as needed)
11
+ label_map = {
12
+ 0: "Safe / Normal",
13
+ 1: "Inappropriate / Unsafe"
14
+ }
15
+
16
+ # Inference function
17
+ def classify_text(text: str):
18
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=256)
19
+ with torch.no_grad():
20
+ outputs = model(**inputs)
21
+ probs = torch.nn.functional.softmax(outputs.logits, dim=1)
22
+ predicted = torch.argmax(probs, dim=1).item()
23
+ confidence = probs[0][predicted].item()
24
+ return {
25
+ "label": label_map.get(predicted, str(predicted)),
26
+ "confidence": round(confidence, 4)
27
+ }
28
+
29
+ # Define Gradio Interface
30
+ demo = gr.Interface(
31
+ fn=classify_text,
32
+ inputs=gr.Textbox(label="Enter text to classify"),
33
+ outputs=[
34
+ gr.Textbox(label="Predicted Label"),
35
+ gr.Textbox(label="Confidence")
36
+ ],
37
+ title="Child-Safety Text Classifier",
38
+ description="This model detects if text content is unsafe or inappropriate for children.",
39
+ allow_flagging="never"
40
+ )
41
+
42
+ # Expose API endpoint explicitly
43
+ demo.launch(api_name="predict")