import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load model model_id = "Rerandaka/Cild_safety_bigbird" tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False) model = AutoModelForSequenceClassification.from_pretrained(model_id) # Classification function def classify(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) with torch.no_grad(): logits = model(**inputs).logits prediction = torch.argmax(logits, dim=1).item() return prediction # 0 = safe, 1 = unsafe # ✅ API-compatible Interface with explicit name demo = gr.Interface( fn=classify, inputs=gr.Textbox(label="Enter paragraph..."), outputs=gr.Number(label="Prediction (0=safe, 1=unsafe)"), api_name="/classify" # 🔥 This only works in gr.Interface (not Blocks) ) demo.queue() demo.launch(show_api=True)