import gradio as gr from transformers import ( SiglipImageProcessor, RobertaTokenizerFast, VisionEncoderDecoderModel ) from PIL import Image import torch # 模型 ID model_id = "starvector/starvector-8b-im2svg" # 分别加载 image processor 和 tokenizer image_processor = SiglipImageProcessor.from_pretrained(model_id) tokenizer = RobertaTokenizerFast.from_pretrained(model_id) model = VisionEncoderDecoderModel.from_pretrained(model_id) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # 推理函数 def im2svg(image): inputs = image_processor(images=image, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=1024) svg_code = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] return svg_code # Gradio UI demo = gr.Interface( fn=im2svg, inputs=gr.Image(type="pil"), outputs="text", title="🖼️ StarVector: Image → SVG", description="上传图像,我将它转化为矢量图(SVG 代码)。适用于简笔画、图标、草图。", ) demo.launch()