Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| from typing import Callable, Dict, List, Optional, Union | |
| import torch | |
| from huggingface_hub.utils import validate_hf_hub_args | |
| from ..utils import ( | |
| USE_PEFT_BACKEND, | |
| deprecate, | |
| get_submodule_by_name, | |
| is_peft_available, | |
| is_peft_version, | |
| is_torch_version, | |
| is_transformers_available, | |
| is_transformers_version, | |
| logging, | |
| ) | |
| from .lora_base import ( # noqa | |
| LORA_WEIGHT_NAME, | |
| LORA_WEIGHT_NAME_SAFE, | |
| LoraBaseMixin, | |
| _fetch_state_dict, | |
| _load_lora_into_text_encoder, | |
| ) | |
| from .lora_conversion_utils import ( | |
| _convert_bfl_flux_control_lora_to_diffusers, | |
| _convert_hunyuan_video_lora_to_diffusers, | |
| _convert_kohya_flux_lora_to_diffusers, | |
| _convert_non_diffusers_lora_to_diffusers, | |
| _convert_xlabs_flux_lora_to_diffusers, | |
| _maybe_map_sgm_blocks_to_diffusers, | |
| ) | |
| _LOW_CPU_MEM_USAGE_DEFAULT_LORA = False | |
| if is_torch_version(">=", "1.9.0"): | |
| if ( | |
| is_peft_available() | |
| and is_peft_version(">=", "0.13.1") | |
| and is_transformers_available() | |
| and is_transformers_version(">", "4.45.2") | |
| ): | |
| _LOW_CPU_MEM_USAGE_DEFAULT_LORA = True | |
| logger = logging.get_logger(__name__) | |
| TEXT_ENCODER_NAME = "text_encoder" | |
| UNET_NAME = "unet" | |
| TRANSFORMER_NAME = "transformer" | |
| _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX = {"x_embedder": "in_channels"} | |
| class StableDiffusionLoraLoaderMixin(LoraBaseMixin): | |
| r""" | |
| Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and | |
| [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). | |
| """ | |
| _lora_loadable_modules = ["unet", "text_encoder"] | |
| unet_name = UNET_NAME | |
| text_encoder_name = TEXT_ENCODER_NAME | |
| def load_lora_weights( | |
| self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | |
| ): | |
| """ | |
| Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and | |
| `self.text_encoder`. | |
| All kwargs are forwarded to `self.lora_state_dict`. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is | |
| loaded. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is | |
| loaded into `self.unet`. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state | |
| dict is loaded into `self.text_encoder`. | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| kwargs (`dict`, *optional*): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| """ | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for this method.") | |
| low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | |
| if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # if a dict is passed, copy it instead of modifying it inplace | |
| if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
| # First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
| state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | |
| is_correct_format = all("lora" in key for key in state_dict.keys()) | |
| if not is_correct_format: | |
| raise ValueError("Invalid LoRA checkpoint.") | |
| self.load_lora_into_unet( | |
| state_dict, | |
| network_alphas=network_alphas, | |
| unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| self.load_lora_into_text_encoder( | |
| state_dict, | |
| network_alphas=network_alphas, | |
| text_encoder=getattr(self, self.text_encoder_name) | |
| if not hasattr(self, "text_encoder") | |
| else self.text_encoder, | |
| lora_scale=self.lora_scale, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| def lora_state_dict( | |
| cls, | |
| pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
| **kwargs, | |
| ): | |
| r""" | |
| Return state dict for lora weights and the network alphas. | |
| <Tip warning={true}> | |
| We support loading A1111 formatted LoRA checkpoints in a limited capacity. | |
| This function is experimental and might change in the future. | |
| </Tip> | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
| with [`ModelMixin.save_pretrained`]. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| weight_name (`str`, *optional*, defaults to None): | |
| Name of the serialized state dict file. | |
| """ | |
| # Load the main state dict first which has the LoRA layers for either of | |
| # UNet and text encoder or both. | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| unet_config = kwargs.pop("unet_config", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| state_dict = _fetch_state_dict( | |
| pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
| weight_name=weight_name, | |
| use_safetensors=use_safetensors, | |
| local_files_only=local_files_only, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| allow_pickle=allow_pickle, | |
| ) | |
| is_dora_scale_present = any("dora_scale" in k for k in state_dict) | |
| if is_dora_scale_present: | |
| warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | |
| logger.warning(warn_msg) | |
| state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | |
| network_alphas = None | |
| # TODO: replace it with a method from `state_dict_utils` | |
| if all( | |
| ( | |
| k.startswith("lora_te_") | |
| or k.startswith("lora_unet_") | |
| or k.startswith("lora_te1_") | |
| or k.startswith("lora_te2_") | |
| ) | |
| for k in state_dict.keys() | |
| ): | |
| # Map SDXL blocks correctly. | |
| if unet_config is not None: | |
| # use unet config to remap block numbers | |
| state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) | |
| state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict) | |
| return state_dict, network_alphas | |
| def load_lora_into_unet( | |
| cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `unet`. | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
| into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
| encoder lora layers. | |
| network_alphas (`Dict[str, float]`): | |
| The value of the network alpha used for stable learning and preventing underflow. This value has the | |
| same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
| link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
| unet (`UNet2DConditionModel`): | |
| The UNet model to load the LoRA layers into. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for this method.") | |
| if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), | |
| # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as | |
| # their prefixes. | |
| keys = list(state_dict.keys()) | |
| only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys) | |
| if not only_text_encoder: | |
| # Load the layers corresponding to UNet. | |
| logger.info(f"Loading {cls.unet_name}.") | |
| unet.load_lora_adapter( | |
| state_dict, | |
| prefix=cls.unet_name, | |
| network_alphas=network_alphas, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| def load_lora_into_text_encoder( | |
| cls, | |
| state_dict, | |
| network_alphas, | |
| text_encoder, | |
| prefix=None, | |
| lora_scale=1.0, | |
| adapter_name=None, | |
| _pipeline=None, | |
| low_cpu_mem_usage=False, | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `text_encoder` | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The key should be prefixed with an | |
| additional `text_encoder` to distinguish between unet lora layers. | |
| network_alphas (`Dict[str, float]`): | |
| The value of the network alpha used for stable learning and preventing underflow. This value has the | |
| same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
| link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
| text_encoder (`CLIPTextModel`): | |
| The text encoder model to load the LoRA layers into. | |
| prefix (`str`): | |
| Expected prefix of the `text_encoder` in the `state_dict`. | |
| lora_scale (`float`): | |
| How much to scale the output of the lora linear layer before it is added with the output of the regular | |
| lora layer. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| _load_lora_into_text_encoder( | |
| state_dict=state_dict, | |
| network_alphas=network_alphas, | |
| lora_scale=lora_scale, | |
| text_encoder=text_encoder, | |
| prefix=prefix, | |
| text_encoder_name=cls.text_encoder_name, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| def save_lora_weights( | |
| cls, | |
| save_directory: Union[str, os.PathLike], | |
| unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = True, | |
| ): | |
| r""" | |
| Save the LoRA parameters corresponding to the UNet and text encoder. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
| unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `unet`. | |
| text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | |
| encoder LoRA state dict because it comes from 🤗 Transformers. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
| """ | |
| state_dict = {} | |
| if not (unet_lora_layers or text_encoder_lora_layers): | |
| raise ValueError("You must pass at least one of `unet_lora_layers` and `text_encoder_lora_layers`.") | |
| if unet_lora_layers: | |
| state_dict.update(cls.pack_weights(unet_lora_layers, cls.unet_name)) | |
| if text_encoder_lora_layers: | |
| state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) | |
| # Save the model | |
| cls.write_lora_layers( | |
| state_dict=state_dict, | |
| save_directory=save_directory, | |
| is_main_process=is_main_process, | |
| weight_name=weight_name, | |
| save_function=save_function, | |
| safe_serialization=safe_serialization, | |
| ) | |
| def fuse_lora( | |
| self, | |
| components: List[str] = ["unet", "text_encoder"], | |
| lora_scale: float = 1.0, | |
| safe_fusing: bool = False, | |
| adapter_names: Optional[List[str]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
| lora_scale (`float`, defaults to 1.0): | |
| Controls how much to influence the outputs with the LoRA parameters. | |
| safe_fusing (`bool`, defaults to `False`): | |
| Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
| adapter_names (`List[str]`, *optional*): | |
| Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
| Example: | |
| ```py | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
| pipeline.fuse_lora(lora_scale=0.7) | |
| ``` | |
| """ | |
| super().fuse_lora( | |
| components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
| ) | |
| def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs): | |
| r""" | |
| Reverses the effect of | |
| [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
| unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | |
| unfuse_text_encoder (`bool`, defaults to `True`): | |
| Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the | |
| LoRA parameters then it won't have any effect. | |
| """ | |
| super().unfuse_lora(components=components) | |
| class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin): | |
| r""" | |
| Load LoRA layers into Stable Diffusion XL [`UNet2DConditionModel`], | |
| [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and | |
| [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection). | |
| """ | |
| _lora_loadable_modules = ["unet", "text_encoder", "text_encoder_2"] | |
| unet_name = UNET_NAME | |
| text_encoder_name = TEXT_ENCODER_NAME | |
| def load_lora_weights( | |
| self, | |
| pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
| adapter_name: Optional[str] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and | |
| `self.text_encoder`. | |
| All kwargs are forwarded to `self.lora_state_dict`. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is | |
| loaded. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is | |
| loaded into `self.unet`. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state | |
| dict is loaded into `self.text_encoder`. | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| kwargs (`dict`, *optional*): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| """ | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for this method.") | |
| low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | |
| if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # We could have accessed the unet config from `lora_state_dict()` too. We pass | |
| # it here explicitly to be able to tell that it's coming from an SDXL | |
| # pipeline. | |
| # if a dict is passed, copy it instead of modifying it inplace | |
| if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
| # First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
| state_dict, network_alphas = self.lora_state_dict( | |
| pretrained_model_name_or_path_or_dict, | |
| unet_config=self.unet.config, | |
| **kwargs, | |
| ) | |
| is_correct_format = all("lora" in key for key in state_dict.keys()) | |
| if not is_correct_format: | |
| raise ValueError("Invalid LoRA checkpoint.") | |
| self.load_lora_into_unet( | |
| state_dict, | |
| network_alphas=network_alphas, | |
| unet=self.unet, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} | |
| if len(text_encoder_state_dict) > 0: | |
| self.load_lora_into_text_encoder( | |
| text_encoder_state_dict, | |
| network_alphas=network_alphas, | |
| text_encoder=self.text_encoder, | |
| prefix="text_encoder", | |
| lora_scale=self.lora_scale, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} | |
| if len(text_encoder_2_state_dict) > 0: | |
| self.load_lora_into_text_encoder( | |
| text_encoder_2_state_dict, | |
| network_alphas=network_alphas, | |
| text_encoder=self.text_encoder_2, | |
| prefix="text_encoder_2", | |
| lora_scale=self.lora_scale, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.lora_state_dict | |
| def lora_state_dict( | |
| cls, | |
| pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
| **kwargs, | |
| ): | |
| r""" | |
| Return state dict for lora weights and the network alphas. | |
| <Tip warning={true}> | |
| We support loading A1111 formatted LoRA checkpoints in a limited capacity. | |
| This function is experimental and might change in the future. | |
| </Tip> | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
| with [`ModelMixin.save_pretrained`]. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| weight_name (`str`, *optional*, defaults to None): | |
| Name of the serialized state dict file. | |
| """ | |
| # Load the main state dict first which has the LoRA layers for either of | |
| # UNet and text encoder or both. | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| unet_config = kwargs.pop("unet_config", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| state_dict = _fetch_state_dict( | |
| pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
| weight_name=weight_name, | |
| use_safetensors=use_safetensors, | |
| local_files_only=local_files_only, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| allow_pickle=allow_pickle, | |
| ) | |
| is_dora_scale_present = any("dora_scale" in k for k in state_dict) | |
| if is_dora_scale_present: | |
| warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | |
| logger.warning(warn_msg) | |
| state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | |
| network_alphas = None | |
| # TODO: replace it with a method from `state_dict_utils` | |
| if all( | |
| ( | |
| k.startswith("lora_te_") | |
| or k.startswith("lora_unet_") | |
| or k.startswith("lora_te1_") | |
| or k.startswith("lora_te2_") | |
| ) | |
| for k in state_dict.keys() | |
| ): | |
| # Map SDXL blocks correctly. | |
| if unet_config is not None: | |
| # use unet config to remap block numbers | |
| state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) | |
| state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict) | |
| return state_dict, network_alphas | |
| # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_unet | |
| def load_lora_into_unet( | |
| cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `unet`. | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
| into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
| encoder lora layers. | |
| network_alphas (`Dict[str, float]`): | |
| The value of the network alpha used for stable learning and preventing underflow. This value has the | |
| same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
| link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
| unet (`UNet2DConditionModel`): | |
| The UNet model to load the LoRA layers into. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for this method.") | |
| if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), | |
| # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as | |
| # their prefixes. | |
| keys = list(state_dict.keys()) | |
| only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys) | |
| if not only_text_encoder: | |
| # Load the layers corresponding to UNet. | |
| logger.info(f"Loading {cls.unet_name}.") | |
| unet.load_lora_adapter( | |
| state_dict, | |
| prefix=cls.unet_name, | |
| network_alphas=network_alphas, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder | |
| def load_lora_into_text_encoder( | |
| cls, | |
| state_dict, | |
| network_alphas, | |
| text_encoder, | |
| prefix=None, | |
| lora_scale=1.0, | |
| adapter_name=None, | |
| _pipeline=None, | |
| low_cpu_mem_usage=False, | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `text_encoder` | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The key should be prefixed with an | |
| additional `text_encoder` to distinguish between unet lora layers. | |
| network_alphas (`Dict[str, float]`): | |
| The value of the network alpha used for stable learning and preventing underflow. This value has the | |
| same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
| link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
| text_encoder (`CLIPTextModel`): | |
| The text encoder model to load the LoRA layers into. | |
| prefix (`str`): | |
| Expected prefix of the `text_encoder` in the `state_dict`. | |
| lora_scale (`float`): | |
| How much to scale the output of the lora linear layer before it is added with the output of the regular | |
| lora layer. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| _load_lora_into_text_encoder( | |
| state_dict=state_dict, | |
| network_alphas=network_alphas, | |
| lora_scale=lora_scale, | |
| text_encoder=text_encoder, | |
| prefix=prefix, | |
| text_encoder_name=cls.text_encoder_name, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| def save_lora_weights( | |
| cls, | |
| save_directory: Union[str, os.PathLike], | |
| unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = True, | |
| ): | |
| r""" | |
| Save the LoRA parameters corresponding to the UNet and text encoder. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
| unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `unet`. | |
| text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | |
| encoder LoRA state dict because it comes from 🤗 Transformers. | |
| text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text | |
| encoder LoRA state dict because it comes from 🤗 Transformers. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
| """ | |
| state_dict = {} | |
| if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): | |
| raise ValueError( | |
| "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`." | |
| ) | |
| if unet_lora_layers: | |
| state_dict.update(cls.pack_weights(unet_lora_layers, "unet")) | |
| if text_encoder_lora_layers: | |
| state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder")) | |
| if text_encoder_2_lora_layers: | |
| state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) | |
| cls.write_lora_layers( | |
| state_dict=state_dict, | |
| save_directory=save_directory, | |
| is_main_process=is_main_process, | |
| weight_name=weight_name, | |
| save_function=save_function, | |
| safe_serialization=safe_serialization, | |
| ) | |
| def fuse_lora( | |
| self, | |
| components: List[str] = ["unet", "text_encoder", "text_encoder_2"], | |
| lora_scale: float = 1.0, | |
| safe_fusing: bool = False, | |
| adapter_names: Optional[List[str]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
| lora_scale (`float`, defaults to 1.0): | |
| Controls how much to influence the outputs with the LoRA parameters. | |
| safe_fusing (`bool`, defaults to `False`): | |
| Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
| adapter_names (`List[str]`, *optional*): | |
| Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
| Example: | |
| ```py | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
| pipeline.fuse_lora(lora_scale=0.7) | |
| ``` | |
| """ | |
| super().fuse_lora( | |
| components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
| ) | |
| def unfuse_lora(self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], **kwargs): | |
| r""" | |
| Reverses the effect of | |
| [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
| unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | |
| unfuse_text_encoder (`bool`, defaults to `True`): | |
| Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the | |
| LoRA parameters then it won't have any effect. | |
| """ | |
| super().unfuse_lora(components=components) | |
| class SD3LoraLoaderMixin(LoraBaseMixin): | |
| r""" | |
| Load LoRA layers into [`SD3Transformer2DModel`], | |
| [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and | |
| [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection). | |
| Specific to [`StableDiffusion3Pipeline`]. | |
| """ | |
| _lora_loadable_modules = ["transformer", "text_encoder", "text_encoder_2"] | |
| transformer_name = TRANSFORMER_NAME | |
| text_encoder_name = TEXT_ENCODER_NAME | |
| def lora_state_dict( | |
| cls, | |
| pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
| **kwargs, | |
| ): | |
| r""" | |
| Return state dict for lora weights and the network alphas. | |
| <Tip warning={true}> | |
| We support loading A1111 formatted LoRA checkpoints in a limited capacity. | |
| This function is experimental and might change in the future. | |
| </Tip> | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
| with [`ModelMixin.save_pretrained`]. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| """ | |
| # Load the main state dict first which has the LoRA layers for either of | |
| # transformer and text encoder or both. | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| state_dict = _fetch_state_dict( | |
| pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
| weight_name=weight_name, | |
| use_safetensors=use_safetensors, | |
| local_files_only=local_files_only, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| allow_pickle=allow_pickle, | |
| ) | |
| is_dora_scale_present = any("dora_scale" in k for k in state_dict) | |
| if is_dora_scale_present: | |
| warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | |
| logger.warning(warn_msg) | |
| state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | |
| return state_dict | |
| def load_lora_weights( | |
| self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | |
| ): | |
| """ | |
| Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and | |
| `self.text_encoder`. | |
| All kwargs are forwarded to `self.lora_state_dict`. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is | |
| loaded. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | |
| dict is loaded into `self.transformer`. | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| kwargs (`dict`, *optional*): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| """ | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for this method.") | |
| low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | |
| if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # if a dict is passed, copy it instead of modifying it inplace | |
| if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
| # First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
| state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | |
| is_correct_format = all("lora" in key for key in state_dict.keys()) | |
| if not is_correct_format: | |
| raise ValueError("Invalid LoRA checkpoint.") | |
| transformer_state_dict = {k: v for k, v in state_dict.items() if "transformer." in k} | |
| if len(transformer_state_dict) > 0: | |
| self.load_lora_into_transformer( | |
| state_dict, | |
| transformer=getattr(self, self.transformer_name) | |
| if not hasattr(self, "transformer") | |
| else self.transformer, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} | |
| if len(text_encoder_state_dict) > 0: | |
| self.load_lora_into_text_encoder( | |
| text_encoder_state_dict, | |
| network_alphas=None, | |
| text_encoder=self.text_encoder, | |
| prefix="text_encoder", | |
| lora_scale=self.lora_scale, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} | |
| if len(text_encoder_2_state_dict) > 0: | |
| self.load_lora_into_text_encoder( | |
| text_encoder_2_state_dict, | |
| network_alphas=None, | |
| text_encoder=self.text_encoder_2, | |
| prefix="text_encoder_2", | |
| lora_scale=self.lora_scale, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| def load_lora_into_transformer( | |
| cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `transformer`. | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
| into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
| encoder lora layers. | |
| transformer (`SD3Transformer2DModel`): | |
| The Transformer model to load the LoRA layers into. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # Load the layers corresponding to transformer. | |
| logger.info(f"Loading {cls.transformer_name}.") | |
| transformer.load_lora_adapter( | |
| state_dict, | |
| network_alphas=None, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder | |
| def load_lora_into_text_encoder( | |
| cls, | |
| state_dict, | |
| network_alphas, | |
| text_encoder, | |
| prefix=None, | |
| lora_scale=1.0, | |
| adapter_name=None, | |
| _pipeline=None, | |
| low_cpu_mem_usage=False, | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `text_encoder` | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The key should be prefixed with an | |
| additional `text_encoder` to distinguish between unet lora layers. | |
| network_alphas (`Dict[str, float]`): | |
| The value of the network alpha used for stable learning and preventing underflow. This value has the | |
| same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
| link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
| text_encoder (`CLIPTextModel`): | |
| The text encoder model to load the LoRA layers into. | |
| prefix (`str`): | |
| Expected prefix of the `text_encoder` in the `state_dict`. | |
| lora_scale (`float`): | |
| How much to scale the output of the lora linear layer before it is added with the output of the regular | |
| lora layer. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| _load_lora_into_text_encoder( | |
| state_dict=state_dict, | |
| network_alphas=network_alphas, | |
| lora_scale=lora_scale, | |
| text_encoder=text_encoder, | |
| prefix=prefix, | |
| text_encoder_name=cls.text_encoder_name, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| def save_lora_weights( | |
| cls, | |
| save_directory: Union[str, os.PathLike], | |
| transformer_lora_layers: Dict[str, torch.nn.Module] = None, | |
| text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = True, | |
| ): | |
| r""" | |
| Save the LoRA parameters corresponding to the UNet and text encoder. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
| transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `transformer`. | |
| text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | |
| encoder LoRA state dict because it comes from 🤗 Transformers. | |
| text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text | |
| encoder LoRA state dict because it comes from 🤗 Transformers. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
| """ | |
| state_dict = {} | |
| if not (transformer_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): | |
| raise ValueError( | |
| "You must pass at least one of `transformer_lora_layers`, `text_encoder_lora_layers`, `text_encoder_2_lora_layers`." | |
| ) | |
| if transformer_lora_layers: | |
| state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | |
| if text_encoder_lora_layers: | |
| state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder")) | |
| if text_encoder_2_lora_layers: | |
| state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) | |
| # Save the model | |
| cls.write_lora_layers( | |
| state_dict=state_dict, | |
| save_directory=save_directory, | |
| is_main_process=is_main_process, | |
| weight_name=weight_name, | |
| save_function=save_function, | |
| safe_serialization=safe_serialization, | |
| ) | |
| def fuse_lora( | |
| self, | |
| components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], | |
| lora_scale: float = 1.0, | |
| safe_fusing: bool = False, | |
| adapter_names: Optional[List[str]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
| lora_scale (`float`, defaults to 1.0): | |
| Controls how much to influence the outputs with the LoRA parameters. | |
| safe_fusing (`bool`, defaults to `False`): | |
| Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
| adapter_names (`List[str]`, *optional*): | |
| Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
| Example: | |
| ```py | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
| pipeline.fuse_lora(lora_scale=0.7) | |
| ``` | |
| """ | |
| super().fuse_lora( | |
| components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
| ) | |
| def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], **kwargs): | |
| r""" | |
| Reverses the effect of | |
| [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
| unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | |
| unfuse_text_encoder (`bool`, defaults to `True`): | |
| Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the | |
| LoRA parameters then it won't have any effect. | |
| """ | |
| super().unfuse_lora(components=components) | |
| class FluxLoraLoaderMixin(LoraBaseMixin): | |
| r""" | |
| Load LoRA layers into [`FluxTransformer2DModel`], | |
| [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). | |
| Specific to [`StableDiffusion3Pipeline`]. | |
| """ | |
| _lora_loadable_modules = ["transformer", "text_encoder"] | |
| transformer_name = TRANSFORMER_NAME | |
| text_encoder_name = TEXT_ENCODER_NAME | |
| _control_lora_supported_norm_keys = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"] | |
| def lora_state_dict( | |
| cls, | |
| pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
| return_alphas: bool = False, | |
| **kwargs, | |
| ): | |
| r""" | |
| Return state dict for lora weights and the network alphas. | |
| <Tip warning={true}> | |
| We support loading A1111 formatted LoRA checkpoints in a limited capacity. | |
| This function is experimental and might change in the future. | |
| </Tip> | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
| with [`ModelMixin.save_pretrained`]. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| """ | |
| # Load the main state dict first which has the LoRA layers for either of | |
| # transformer and text encoder or both. | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| state_dict = _fetch_state_dict( | |
| pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
| weight_name=weight_name, | |
| use_safetensors=use_safetensors, | |
| local_files_only=local_files_only, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| allow_pickle=allow_pickle, | |
| ) | |
| is_dora_scale_present = any("dora_scale" in k for k in state_dict) | |
| if is_dora_scale_present: | |
| warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | |
| logger.warning(warn_msg) | |
| state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | |
| # TODO (sayakpaul): to a follow-up to clean and try to unify the conditions. | |
| is_kohya = any(".lora_down.weight" in k for k in state_dict) | |
| if is_kohya: | |
| state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict) | |
| # Kohya already takes care of scaling the LoRA parameters with alpha. | |
| return (state_dict, None) if return_alphas else state_dict | |
| is_xlabs = any("processor" in k for k in state_dict) | |
| if is_xlabs: | |
| state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict) | |
| # xlabs doesn't use `alpha`. | |
| return (state_dict, None) if return_alphas else state_dict | |
| is_bfl_control = any("query_norm.scale" in k for k in state_dict) | |
| if is_bfl_control: | |
| state_dict = _convert_bfl_flux_control_lora_to_diffusers(state_dict) | |
| return (state_dict, None) if return_alphas else state_dict | |
| # For state dicts like | |
| # https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA | |
| keys = list(state_dict.keys()) | |
| network_alphas = {} | |
| for k in keys: | |
| if "alpha" in k: | |
| alpha_value = state_dict.get(k) | |
| if (torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value)) or isinstance( | |
| alpha_value, float | |
| ): | |
| network_alphas[k] = state_dict.pop(k) | |
| else: | |
| raise ValueError( | |
| f"The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue." | |
| ) | |
| if return_alphas: | |
| return state_dict, network_alphas | |
| else: | |
| return state_dict | |
| def load_lora_weights( | |
| self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | |
| ): | |
| """ | |
| Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | |
| `self.text_encoder`. | |
| All kwargs are forwarded to `self.lora_state_dict`. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is | |
| loaded. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | |
| dict is loaded into `self.transformer`. | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| kwargs (`dict`, *optional*): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| `Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for this method.") | |
| low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | |
| if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # if a dict is passed, copy it instead of modifying it inplace | |
| if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
| # First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
| state_dict, network_alphas = self.lora_state_dict( | |
| pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs | |
| ) | |
| has_lora_keys = any("lora" in key for key in state_dict.keys()) | |
| # Flux Control LoRAs also have norm keys | |
| has_norm_keys = any( | |
| norm_key in key for key in state_dict.keys() for norm_key in self._control_lora_supported_norm_keys | |
| ) | |
| if not (has_lora_keys or has_norm_keys): | |
| raise ValueError("Invalid LoRA checkpoint.") | |
| transformer_lora_state_dict = { | |
| k: state_dict.pop(k) for k in list(state_dict.keys()) if "transformer." in k and "lora" in k | |
| } | |
| transformer_norm_state_dict = { | |
| k: state_dict.pop(k) | |
| for k in list(state_dict.keys()) | |
| if "transformer." in k and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys) | |
| } | |
| transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer | |
| has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_( | |
| transformer, transformer_lora_state_dict, transformer_norm_state_dict | |
| ) | |
| if has_param_with_expanded_shape: | |
| logger.info( | |
| "The LoRA weights contain parameters that have different shapes that expected by the transformer. " | |
| "As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. " | |
| "To get a comprehensive list of parameter names that were modified, enable debug logging." | |
| ) | |
| transformer_lora_state_dict = self._maybe_expand_lora_state_dict( | |
| transformer=transformer, lora_state_dict=transformer_lora_state_dict | |
| ) | |
| if len(transformer_lora_state_dict) > 0: | |
| self.load_lora_into_transformer( | |
| transformer_lora_state_dict, | |
| network_alphas=network_alphas, | |
| transformer=transformer, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| if len(transformer_norm_state_dict) > 0: | |
| transformer._transformer_norm_layers = self._load_norm_into_transformer( | |
| transformer_norm_state_dict, | |
| transformer=transformer, | |
| discard_original_layers=False, | |
| ) | |
| text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} | |
| if len(text_encoder_state_dict) > 0: | |
| self.load_lora_into_text_encoder( | |
| text_encoder_state_dict, | |
| network_alphas=network_alphas, | |
| text_encoder=self.text_encoder, | |
| prefix="text_encoder", | |
| lora_scale=self.lora_scale, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| def load_lora_into_transformer( | |
| cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `transformer`. | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
| into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
| encoder lora layers. | |
| network_alphas (`Dict[str, float]`): | |
| The value of the network alpha used for stable learning and preventing underflow. This value has the | |
| same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
| link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
| transformer (`FluxTransformer2DModel`): | |
| The Transformer model to load the LoRA layers into. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # Load the layers corresponding to transformer. | |
| keys = list(state_dict.keys()) | |
| transformer_present = any(key.startswith(cls.transformer_name) for key in keys) | |
| if transformer_present: | |
| logger.info(f"Loading {cls.transformer_name}.") | |
| transformer.load_lora_adapter( | |
| state_dict, | |
| network_alphas=network_alphas, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| def _load_norm_into_transformer( | |
| cls, | |
| state_dict, | |
| transformer, | |
| prefix=None, | |
| discard_original_layers=False, | |
| ) -> Dict[str, torch.Tensor]: | |
| # Remove prefix if present | |
| prefix = prefix or cls.transformer_name | |
| for key in list(state_dict.keys()): | |
| if key.split(".")[0] == prefix: | |
| state_dict[key[len(f"{prefix}.") :]] = state_dict.pop(key) | |
| # Find invalid keys | |
| transformer_state_dict = transformer.state_dict() | |
| transformer_keys = set(transformer_state_dict.keys()) | |
| state_dict_keys = set(state_dict.keys()) | |
| extra_keys = list(state_dict_keys - transformer_keys) | |
| if extra_keys: | |
| logger.warning( | |
| f"Unsupported keys found in state dict when trying to load normalization layers into the transformer. The following keys will be ignored:\n{extra_keys}." | |
| ) | |
| for key in extra_keys: | |
| state_dict.pop(key) | |
| # Save the layers that are going to be overwritten so that unload_lora_weights can work as expected | |
| overwritten_layers_state_dict = {} | |
| if not discard_original_layers: | |
| for key in state_dict.keys(): | |
| overwritten_layers_state_dict[key] = transformer_state_dict[key].clone() | |
| logger.info( | |
| "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will directly update the state_dict of the transformer " | |
| 'as opposed to the LoRA layers that will co-exist separately until the "fuse_lora()" method is called. That is to say, the normalization layers will always be directly ' | |
| "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed. This might also have implications when dealing with multiple LoRAs. " | |
| "If you notice something unexpected, please open an issue: https://github.com/huggingface/diffusers/issues." | |
| ) | |
| # We can't load with strict=True because the current state_dict does not contain all the transformer keys | |
| incompatible_keys = transformer.load_state_dict(state_dict, strict=False) | |
| unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
| # We shouldn't expect to see the supported norm keys here being present in the unexpected keys. | |
| if unexpected_keys: | |
| if any(norm_key in k for k in unexpected_keys for norm_key in cls._control_lora_supported_norm_keys): | |
| raise ValueError( | |
| f"Found {unexpected_keys} as unexpected keys while trying to load norm layers into the transformer." | |
| ) | |
| return overwritten_layers_state_dict | |
| # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder | |
| def load_lora_into_text_encoder( | |
| cls, | |
| state_dict, | |
| network_alphas, | |
| text_encoder, | |
| prefix=None, | |
| lora_scale=1.0, | |
| adapter_name=None, | |
| _pipeline=None, | |
| low_cpu_mem_usage=False, | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `text_encoder` | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The key should be prefixed with an | |
| additional `text_encoder` to distinguish between unet lora layers. | |
| network_alphas (`Dict[str, float]`): | |
| The value of the network alpha used for stable learning and preventing underflow. This value has the | |
| same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
| link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
| text_encoder (`CLIPTextModel`): | |
| The text encoder model to load the LoRA layers into. | |
| prefix (`str`): | |
| Expected prefix of the `text_encoder` in the `state_dict`. | |
| lora_scale (`float`): | |
| How much to scale the output of the lora linear layer before it is added with the output of the regular | |
| lora layer. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| _load_lora_into_text_encoder( | |
| state_dict=state_dict, | |
| network_alphas=network_alphas, | |
| lora_scale=lora_scale, | |
| text_encoder=text_encoder, | |
| prefix=prefix, | |
| text_encoder_name=cls.text_encoder_name, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer | |
| def save_lora_weights( | |
| cls, | |
| save_directory: Union[str, os.PathLike], | |
| transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = True, | |
| ): | |
| r""" | |
| Save the LoRA parameters corresponding to the UNet and text encoder. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
| transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `transformer`. | |
| text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | |
| encoder LoRA state dict because it comes from 🤗 Transformers. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
| """ | |
| state_dict = {} | |
| if not (transformer_lora_layers or text_encoder_lora_layers): | |
| raise ValueError("You must pass at least one of `transformer_lora_layers` and `text_encoder_lora_layers`.") | |
| if transformer_lora_layers: | |
| state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | |
| if text_encoder_lora_layers: | |
| state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) | |
| # Save the model | |
| cls.write_lora_layers( | |
| state_dict=state_dict, | |
| save_directory=save_directory, | |
| is_main_process=is_main_process, | |
| weight_name=weight_name, | |
| save_function=save_function, | |
| safe_serialization=safe_serialization, | |
| ) | |
| def fuse_lora( | |
| self, | |
| components: List[str] = ["transformer"], | |
| lora_scale: float = 1.0, | |
| safe_fusing: bool = False, | |
| adapter_names: Optional[List[str]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
| lora_scale (`float`, defaults to 1.0): | |
| Controls how much to influence the outputs with the LoRA parameters. | |
| safe_fusing (`bool`, defaults to `False`): | |
| Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
| adapter_names (`List[str]`, *optional*): | |
| Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
| Example: | |
| ```py | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
| pipeline.fuse_lora(lora_scale=0.7) | |
| ``` | |
| """ | |
| transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer | |
| if ( | |
| hasattr(transformer, "_transformer_norm_layers") | |
| and isinstance(transformer._transformer_norm_layers, dict) | |
| and len(transformer._transformer_norm_layers.keys()) > 0 | |
| ): | |
| logger.info( | |
| "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will be directly updated the state_dict of the transformer " | |
| "as opposed to the LoRA layers that will co-exist separately until the 'fuse_lora()' method is called. That is to say, the normalization layers will always be directly " | |
| "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed." | |
| ) | |
| super().fuse_lora( | |
| components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
| ) | |
| def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs): | |
| r""" | |
| Reverses the effect of | |
| [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
| """ | |
| transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer | |
| if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers: | |
| transformer.load_state_dict(transformer._transformer_norm_layers, strict=False) | |
| super().unfuse_lora(components=components) | |
| # We override this here account for `_transformer_norm_layers` and `_overwritten_params`. | |
| def unload_lora_weights(self, reset_to_overwritten_params=False): | |
| """ | |
| Unloads the LoRA parameters. | |
| Args: | |
| reset_to_overwritten_params (`bool`, defaults to `False`): Whether to reset the LoRA-loaded modules | |
| to their original params. Refer to the [Flux | |
| documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) to learn more. | |
| Examples: | |
| ```python | |
| >>> # Assuming `pipeline` is already loaded with the LoRA parameters. | |
| >>> pipeline.unload_lora_weights() | |
| >>> ... | |
| ``` | |
| """ | |
| super().unload_lora_weights() | |
| transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer | |
| if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers: | |
| transformer.load_state_dict(transformer._transformer_norm_layers, strict=False) | |
| transformer._transformer_norm_layers = None | |
| if reset_to_overwritten_params and getattr(transformer, "_overwritten_params", None) is not None: | |
| overwritten_params = transformer._overwritten_params | |
| module_names = set() | |
| for param_name in overwritten_params: | |
| if param_name.endswith(".weight"): | |
| module_names.add(param_name.replace(".weight", "")) | |
| for name, module in transformer.named_modules(): | |
| if isinstance(module, torch.nn.Linear) and name in module_names: | |
| module_weight = module.weight.data | |
| module_bias = module.bias.data if module.bias is not None else None | |
| bias = module_bias is not None | |
| parent_module_name, _, current_module_name = name.rpartition(".") | |
| parent_module = transformer.get_submodule(parent_module_name) | |
| current_param_weight = overwritten_params[f"{name}.weight"] | |
| in_features, out_features = current_param_weight.shape[1], current_param_weight.shape[0] | |
| with torch.device("meta"): | |
| original_module = torch.nn.Linear( | |
| in_features, | |
| out_features, | |
| bias=bias, | |
| dtype=module_weight.dtype, | |
| ) | |
| tmp_state_dict = {"weight": current_param_weight} | |
| if module_bias is not None: | |
| tmp_state_dict.update({"bias": overwritten_params[f"{name}.bias"]}) | |
| original_module.load_state_dict(tmp_state_dict, assign=True, strict=True) | |
| setattr(parent_module, current_module_name, original_module) | |
| del tmp_state_dict | |
| if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX: | |
| attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name] | |
| new_value = int(current_param_weight.shape[1]) | |
| old_value = getattr(transformer.config, attribute_name) | |
| setattr(transformer.config, attribute_name, new_value) | |
| logger.info( | |
| f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}." | |
| ) | |
| def _maybe_expand_transformer_param_shape_or_error_( | |
| cls, | |
| transformer: torch.nn.Module, | |
| lora_state_dict=None, | |
| norm_state_dict=None, | |
| prefix=None, | |
| ) -> bool: | |
| """ | |
| Control LoRA expands the shape of the input layer from (3072, 64) to (3072, 128). This method handles that and | |
| generalizes things a bit so that any parameter that needs expansion receives appropriate treatement. | |
| """ | |
| state_dict = {} | |
| if lora_state_dict is not None: | |
| state_dict.update(lora_state_dict) | |
| if norm_state_dict is not None: | |
| state_dict.update(norm_state_dict) | |
| # Remove prefix if present | |
| prefix = prefix or cls.transformer_name | |
| for key in list(state_dict.keys()): | |
| if key.split(".")[0] == prefix: | |
| state_dict[key[len(f"{prefix}.") :]] = state_dict.pop(key) | |
| # Expand transformer parameter shapes if they don't match lora | |
| has_param_with_shape_update = False | |
| overwritten_params = {} | |
| is_peft_loaded = getattr(transformer, "peft_config", None) is not None | |
| for name, module in transformer.named_modules(): | |
| if isinstance(module, torch.nn.Linear): | |
| module_weight = module.weight.data | |
| module_bias = module.bias.data if module.bias is not None else None | |
| bias = module_bias is not None | |
| lora_base_name = name.replace(".base_layer", "") if is_peft_loaded else name | |
| lora_A_weight_name = f"{lora_base_name}.lora_A.weight" | |
| lora_B_weight_name = f"{lora_base_name}.lora_B.weight" | |
| if lora_A_weight_name not in state_dict: | |
| continue | |
| in_features = state_dict[lora_A_weight_name].shape[1] | |
| out_features = state_dict[lora_B_weight_name].shape[0] | |
| # Model maybe loaded with different quantization schemes which may flatten the params. | |
| # `bitsandbytes`, for example, flatten the weights when using 4bit. 8bit bnb models | |
| # preserve weight shape. | |
| module_weight_shape = cls._calculate_module_shape(model=transformer, base_module=module) | |
| # This means there's no need for an expansion in the params, so we simply skip. | |
| if tuple(module_weight_shape) == (out_features, in_features): | |
| continue | |
| # TODO (sayakpaul): We still need to consider if the module we're expanding is | |
| # quantized and handle it accordingly if that is the case. | |
| module_out_features, module_in_features = module_weight.shape | |
| debug_message = "" | |
| if in_features > module_in_features: | |
| debug_message += ( | |
| f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA ' | |
| f"checkpoint contains higher number of features than expected. The number of input_features will be " | |
| f"expanded from {module_in_features} to {in_features}" | |
| ) | |
| if out_features > module_out_features: | |
| debug_message += ( | |
| ", and the number of output features will be " | |
| f"expanded from {module_out_features} to {out_features}." | |
| ) | |
| else: | |
| debug_message += "." | |
| if debug_message: | |
| logger.debug(debug_message) | |
| if out_features > module_out_features or in_features > module_in_features: | |
| has_param_with_shape_update = True | |
| parent_module_name, _, current_module_name = name.rpartition(".") | |
| parent_module = transformer.get_submodule(parent_module_name) | |
| with torch.device("meta"): | |
| expanded_module = torch.nn.Linear( | |
| in_features, out_features, bias=bias, dtype=module_weight.dtype | |
| ) | |
| # Only weights are expanded and biases are not. This is because only the input dimensions | |
| # are changed while the output dimensions remain the same. The shape of the weight tensor | |
| # is (out_features, in_features), while the shape of bias tensor is (out_features,), which | |
| # explains the reason why only weights are expanded. | |
| new_weight = torch.zeros_like( | |
| expanded_module.weight.data, device=module_weight.device, dtype=module_weight.dtype | |
| ) | |
| slices = tuple(slice(0, dim) for dim in module_weight.shape) | |
| new_weight[slices] = module_weight | |
| tmp_state_dict = {"weight": new_weight} | |
| if module_bias is not None: | |
| tmp_state_dict["bias"] = module_bias | |
| expanded_module.load_state_dict(tmp_state_dict, strict=True, assign=True) | |
| setattr(parent_module, current_module_name, expanded_module) | |
| del tmp_state_dict | |
| if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX: | |
| attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name] | |
| new_value = int(expanded_module.weight.data.shape[1]) | |
| old_value = getattr(transformer.config, attribute_name) | |
| setattr(transformer.config, attribute_name, new_value) | |
| logger.info( | |
| f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}." | |
| ) | |
| # For `unload_lora_weights()`. | |
| # TODO: this could lead to more memory overhead if the number of overwritten params | |
| # are large. Should be revisited later and tackled through a `discard_original_layers` arg. | |
| overwritten_params[f"{current_module_name}.weight"] = module_weight | |
| if module_bias is not None: | |
| overwritten_params[f"{current_module_name}.bias"] = module_bias | |
| if len(overwritten_params) > 0: | |
| transformer._overwritten_params = overwritten_params | |
| return has_param_with_shape_update | |
| def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict): | |
| expanded_module_names = set() | |
| transformer_state_dict = transformer.state_dict() | |
| prefix = f"{cls.transformer_name}." | |
| lora_module_names = [ | |
| key[: -len(".lora_A.weight")] for key in lora_state_dict if key.endswith(".lora_A.weight") | |
| ] | |
| lora_module_names = [name[len(prefix) :] for name in lora_module_names if name.startswith(prefix)] | |
| lora_module_names = sorted(set(lora_module_names)) | |
| transformer_module_names = sorted({name for name, _ in transformer.named_modules()}) | |
| unexpected_modules = set(lora_module_names) - set(transformer_module_names) | |
| if unexpected_modules: | |
| logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.") | |
| is_peft_loaded = getattr(transformer, "peft_config", None) is not None | |
| for k in lora_module_names: | |
| if k in unexpected_modules: | |
| continue | |
| base_param_name = ( | |
| f"{k.replace(prefix, '')}.base_layer.weight" | |
| if is_peft_loaded and f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict | |
| else f"{k.replace(prefix, '')}.weight" | |
| ) | |
| base_weight_param = transformer_state_dict[base_param_name] | |
| lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"] | |
| # TODO (sayakpaul): Handle the cases when we actually need to expand when using quantization. | |
| base_module_shape = cls._calculate_module_shape(model=transformer, base_weight_param_name=base_param_name) | |
| if base_module_shape[1] > lora_A_param.shape[1]: | |
| shape = (lora_A_param.shape[0], base_weight_param.shape[1]) | |
| expanded_state_dict_weight = torch.zeros(shape, device=base_weight_param.device) | |
| expanded_state_dict_weight[:, : lora_A_param.shape[1]].copy_(lora_A_param) | |
| lora_state_dict[f"{prefix}{k}.lora_A.weight"] = expanded_state_dict_weight | |
| expanded_module_names.add(k) | |
| elif base_module_shape[1] < lora_A_param.shape[1]: | |
| raise NotImplementedError( | |
| f"This LoRA param ({k}.lora_A.weight) has an incompatible shape {lora_A_param.shape}. Please open an issue to file for a feature request - https://github.com/huggingface/diffusers/issues/new." | |
| ) | |
| if expanded_module_names: | |
| logger.info( | |
| f"The following LoRA modules were zero padded to match the state dict of {cls.transformer_name}: {expanded_module_names}. Please open an issue if you think this was unexpected - https://github.com/huggingface/diffusers/issues/new." | |
| ) | |
| return lora_state_dict | |
| def _calculate_module_shape( | |
| model: "torch.nn.Module", | |
| base_module: "torch.nn.Linear" = None, | |
| base_weight_param_name: str = None, | |
| ) -> "torch.Size": | |
| def _get_weight_shape(weight: torch.Tensor): | |
| return weight.quant_state.shape if weight.__class__.__name__ == "Params4bit" else weight.shape | |
| if base_module is not None: | |
| return _get_weight_shape(base_module.weight) | |
| elif base_weight_param_name is not None: | |
| if not base_weight_param_name.endswith(".weight"): | |
| raise ValueError( | |
| f"Invalid `base_weight_param_name` passed as it does not end with '.weight' {base_weight_param_name=}." | |
| ) | |
| module_path = base_weight_param_name.rsplit(".weight", 1)[0] | |
| submodule = get_submodule_by_name(model, module_path) | |
| return _get_weight_shape(submodule.weight) | |
| raise ValueError("Either `base_module` or `base_weight_param_name` must be provided.") | |
| # The reason why we subclass from `StableDiffusionLoraLoaderMixin` here is because Amused initially | |
| # relied on `StableDiffusionLoraLoaderMixin` for its LoRA support. | |
| class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin): | |
| _lora_loadable_modules = ["transformer", "text_encoder"] | |
| transformer_name = TRANSFORMER_NAME | |
| text_encoder_name = TEXT_ENCODER_NAME | |
| # Copied from diffusers.loaders.lora_pipeline.FluxLoraLoaderMixin.load_lora_into_transformer with FluxTransformer2DModel->UVit2DModel | |
| def load_lora_into_transformer( | |
| cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `transformer`. | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
| into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
| encoder lora layers. | |
| network_alphas (`Dict[str, float]`): | |
| The value of the network alpha used for stable learning and preventing underflow. This value has the | |
| same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
| link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
| transformer (`UVit2DModel`): | |
| The Transformer model to load the LoRA layers into. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # Load the layers corresponding to transformer. | |
| keys = list(state_dict.keys()) | |
| transformer_present = any(key.startswith(cls.transformer_name) for key in keys) | |
| if transformer_present: | |
| logger.info(f"Loading {cls.transformer_name}.") | |
| transformer.load_lora_adapter( | |
| state_dict, | |
| network_alphas=network_alphas, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder | |
| def load_lora_into_text_encoder( | |
| cls, | |
| state_dict, | |
| network_alphas, | |
| text_encoder, | |
| prefix=None, | |
| lora_scale=1.0, | |
| adapter_name=None, | |
| _pipeline=None, | |
| low_cpu_mem_usage=False, | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `text_encoder` | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The key should be prefixed with an | |
| additional `text_encoder` to distinguish between unet lora layers. | |
| network_alphas (`Dict[str, float]`): | |
| The value of the network alpha used for stable learning and preventing underflow. This value has the | |
| same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
| link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
| text_encoder (`CLIPTextModel`): | |
| The text encoder model to load the LoRA layers into. | |
| prefix (`str`): | |
| Expected prefix of the `text_encoder` in the `state_dict`. | |
| lora_scale (`float`): | |
| How much to scale the output of the lora linear layer before it is added with the output of the regular | |
| lora layer. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| _load_lora_into_text_encoder( | |
| state_dict=state_dict, | |
| network_alphas=network_alphas, | |
| lora_scale=lora_scale, | |
| text_encoder=text_encoder, | |
| prefix=prefix, | |
| text_encoder_name=cls.text_encoder_name, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| def save_lora_weights( | |
| cls, | |
| save_directory: Union[str, os.PathLike], | |
| text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, | |
| transformer_lora_layers: Dict[str, torch.nn.Module] = None, | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = True, | |
| ): | |
| r""" | |
| Save the LoRA parameters corresponding to the UNet and text encoder. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
| unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `unet`. | |
| text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | |
| encoder LoRA state dict because it comes from 🤗 Transformers. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
| """ | |
| state_dict = {} | |
| if not (transformer_lora_layers or text_encoder_lora_layers): | |
| raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.") | |
| if transformer_lora_layers: | |
| state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | |
| if text_encoder_lora_layers: | |
| state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) | |
| # Save the model | |
| cls.write_lora_layers( | |
| state_dict=state_dict, | |
| save_directory=save_directory, | |
| is_main_process=is_main_process, | |
| weight_name=weight_name, | |
| save_function=save_function, | |
| safe_serialization=safe_serialization, | |
| ) | |
| class CogVideoXLoraLoaderMixin(LoraBaseMixin): | |
| r""" | |
| Load LoRA layers into [`CogVideoXTransformer3DModel`]. Specific to [`CogVideoXPipeline`]. | |
| """ | |
| _lora_loadable_modules = ["transformer"] | |
| transformer_name = TRANSFORMER_NAME | |
| # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict | |
| def lora_state_dict( | |
| cls, | |
| pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
| **kwargs, | |
| ): | |
| r""" | |
| Return state dict for lora weights and the network alphas. | |
| <Tip warning={true}> | |
| We support loading A1111 formatted LoRA checkpoints in a limited capacity. | |
| This function is experimental and might change in the future. | |
| </Tip> | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
| with [`ModelMixin.save_pretrained`]. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| """ | |
| # Load the main state dict first which has the LoRA layers for either of | |
| # transformer and text encoder or both. | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| state_dict = _fetch_state_dict( | |
| pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
| weight_name=weight_name, | |
| use_safetensors=use_safetensors, | |
| local_files_only=local_files_only, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| allow_pickle=allow_pickle, | |
| ) | |
| is_dora_scale_present = any("dora_scale" in k for k in state_dict) | |
| if is_dora_scale_present: | |
| warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | |
| logger.warning(warn_msg) | |
| state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | |
| return state_dict | |
| def load_lora_weights( | |
| self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | |
| ): | |
| """ | |
| Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | |
| `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See | |
| [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | |
| dict is loaded into `self.transformer`. | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| kwargs (`dict`, *optional*): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| """ | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for this method.") | |
| low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | |
| if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # if a dict is passed, copy it instead of modifying it inplace | |
| if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
| # First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
| state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | |
| is_correct_format = all("lora" in key for key in state_dict.keys()) | |
| if not is_correct_format: | |
| raise ValueError("Invalid LoRA checkpoint.") | |
| self.load_lora_into_transformer( | |
| state_dict, | |
| transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogVideoXTransformer3DModel | |
| def load_lora_into_transformer( | |
| cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `transformer`. | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
| into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
| encoder lora layers. | |
| transformer (`CogVideoXTransformer3DModel`): | |
| The Transformer model to load the LoRA layers into. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # Load the layers corresponding to transformer. | |
| logger.info(f"Loading {cls.transformer_name}.") | |
| transformer.load_lora_adapter( | |
| state_dict, | |
| network_alphas=None, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Adapted from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights without support for text encoder | |
| def save_lora_weights( | |
| cls, | |
| save_directory: Union[str, os.PathLike], | |
| transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = True, | |
| ): | |
| r""" | |
| Save the LoRA parameters corresponding to the UNet and text encoder. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
| transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `transformer`. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
| """ | |
| state_dict = {} | |
| if not transformer_lora_layers: | |
| raise ValueError("You must pass `transformer_lora_layers`.") | |
| if transformer_lora_layers: | |
| state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | |
| # Save the model | |
| cls.write_lora_layers( | |
| state_dict=state_dict, | |
| save_directory=save_directory, | |
| is_main_process=is_main_process, | |
| weight_name=weight_name, | |
| save_function=save_function, | |
| safe_serialization=safe_serialization, | |
| ) | |
| def fuse_lora( | |
| self, | |
| components: List[str] = ["transformer"], | |
| lora_scale: float = 1.0, | |
| safe_fusing: bool = False, | |
| adapter_names: Optional[List[str]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
| lora_scale (`float`, defaults to 1.0): | |
| Controls how much to influence the outputs with the LoRA parameters. | |
| safe_fusing (`bool`, defaults to `False`): | |
| Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
| adapter_names (`List[str]`, *optional*): | |
| Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
| Example: | |
| ```py | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
| pipeline.fuse_lora(lora_scale=0.7) | |
| ``` | |
| """ | |
| super().fuse_lora( | |
| components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
| ) | |
| def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): | |
| r""" | |
| Reverses the effect of | |
| [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
| unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | |
| """ | |
| super().unfuse_lora(components=components) | |
| class Mochi1LoraLoaderMixin(LoraBaseMixin): | |
| r""" | |
| Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`]. | |
| """ | |
| _lora_loadable_modules = ["transformer"] | |
| transformer_name = TRANSFORMER_NAME | |
| # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict | |
| def lora_state_dict( | |
| cls, | |
| pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
| **kwargs, | |
| ): | |
| r""" | |
| Return state dict for lora weights and the network alphas. | |
| <Tip warning={true}> | |
| We support loading A1111 formatted LoRA checkpoints in a limited capacity. | |
| This function is experimental and might change in the future. | |
| </Tip> | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
| with [`ModelMixin.save_pretrained`]. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| """ | |
| # Load the main state dict first which has the LoRA layers for either of | |
| # transformer and text encoder or both. | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| state_dict = _fetch_state_dict( | |
| pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
| weight_name=weight_name, | |
| use_safetensors=use_safetensors, | |
| local_files_only=local_files_only, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| allow_pickle=allow_pickle, | |
| ) | |
| is_dora_scale_present = any("dora_scale" in k for k in state_dict) | |
| if is_dora_scale_present: | |
| warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | |
| logger.warning(warn_msg) | |
| state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | |
| return state_dict | |
| # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights | |
| def load_lora_weights( | |
| self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | |
| ): | |
| """ | |
| Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | |
| `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See | |
| [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | |
| dict is loaded into `self.transformer`. | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| kwargs (`dict`, *optional*): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| """ | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for this method.") | |
| low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | |
| if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # if a dict is passed, copy it instead of modifying it inplace | |
| if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
| # First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
| state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | |
| is_correct_format = all("lora" in key for key in state_dict.keys()) | |
| if not is_correct_format: | |
| raise ValueError("Invalid LoRA checkpoint.") | |
| self.load_lora_into_transformer( | |
| state_dict, | |
| transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->MochiTransformer3DModel | |
| def load_lora_into_transformer( | |
| cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `transformer`. | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
| into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
| encoder lora layers. | |
| transformer (`MochiTransformer3DModel`): | |
| The Transformer model to load the LoRA layers into. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # Load the layers corresponding to transformer. | |
| logger.info(f"Loading {cls.transformer_name}.") | |
| transformer.load_lora_adapter( | |
| state_dict, | |
| network_alphas=None, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights | |
| def save_lora_weights( | |
| cls, | |
| save_directory: Union[str, os.PathLike], | |
| transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = True, | |
| ): | |
| r""" | |
| Save the LoRA parameters corresponding to the UNet and text encoder. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
| transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `transformer`. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
| """ | |
| state_dict = {} | |
| if not transformer_lora_layers: | |
| raise ValueError("You must pass `transformer_lora_layers`.") | |
| if transformer_lora_layers: | |
| state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | |
| # Save the model | |
| cls.write_lora_layers( | |
| state_dict=state_dict, | |
| save_directory=save_directory, | |
| is_main_process=is_main_process, | |
| weight_name=weight_name, | |
| save_function=save_function, | |
| safe_serialization=safe_serialization, | |
| ) | |
| def fuse_lora( | |
| self, | |
| components: List[str] = ["transformer"], | |
| lora_scale: float = 1.0, | |
| safe_fusing: bool = False, | |
| adapter_names: Optional[List[str]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
| lora_scale (`float`, defaults to 1.0): | |
| Controls how much to influence the outputs with the LoRA parameters. | |
| safe_fusing (`bool`, defaults to `False`): | |
| Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
| adapter_names (`List[str]`, *optional*): | |
| Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
| Example: | |
| ```py | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
| pipeline.fuse_lora(lora_scale=0.7) | |
| ``` | |
| """ | |
| super().fuse_lora( | |
| components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
| ) | |
| def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): | |
| r""" | |
| Reverses the effect of | |
| [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
| unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | |
| """ | |
| super().unfuse_lora(components=components) | |
| class LTXVideoLoraLoaderMixin(LoraBaseMixin): | |
| r""" | |
| Load LoRA layers into [`LTXVideoTransformer3DModel`]. Specific to [`LTXPipeline`]. | |
| """ | |
| _lora_loadable_modules = ["transformer"] | |
| transformer_name = TRANSFORMER_NAME | |
| # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict | |
| def lora_state_dict( | |
| cls, | |
| pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
| **kwargs, | |
| ): | |
| r""" | |
| Return state dict for lora weights and the network alphas. | |
| <Tip warning={true}> | |
| We support loading A1111 formatted LoRA checkpoints in a limited capacity. | |
| This function is experimental and might change in the future. | |
| </Tip> | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
| with [`ModelMixin.save_pretrained`]. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| """ | |
| # Load the main state dict first which has the LoRA layers for either of | |
| # transformer and text encoder or both. | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| state_dict = _fetch_state_dict( | |
| pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
| weight_name=weight_name, | |
| use_safetensors=use_safetensors, | |
| local_files_only=local_files_only, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| allow_pickle=allow_pickle, | |
| ) | |
| is_dora_scale_present = any("dora_scale" in k for k in state_dict) | |
| if is_dora_scale_present: | |
| warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | |
| logger.warning(warn_msg) | |
| state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | |
| return state_dict | |
| # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights | |
| def load_lora_weights( | |
| self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | |
| ): | |
| """ | |
| Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | |
| `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See | |
| [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | |
| dict is loaded into `self.transformer`. | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| kwargs (`dict`, *optional*): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| """ | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for this method.") | |
| low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | |
| if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # if a dict is passed, copy it instead of modifying it inplace | |
| if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
| # First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
| state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | |
| is_correct_format = all("lora" in key for key in state_dict.keys()) | |
| if not is_correct_format: | |
| raise ValueError("Invalid LoRA checkpoint.") | |
| self.load_lora_into_transformer( | |
| state_dict, | |
| transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->LTXVideoTransformer3DModel | |
| def load_lora_into_transformer( | |
| cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `transformer`. | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
| into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
| encoder lora layers. | |
| transformer (`LTXVideoTransformer3DModel`): | |
| The Transformer model to load the LoRA layers into. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # Load the layers corresponding to transformer. | |
| logger.info(f"Loading {cls.transformer_name}.") | |
| transformer.load_lora_adapter( | |
| state_dict, | |
| network_alphas=None, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights | |
| def save_lora_weights( | |
| cls, | |
| save_directory: Union[str, os.PathLike], | |
| transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = True, | |
| ): | |
| r""" | |
| Save the LoRA parameters corresponding to the UNet and text encoder. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
| transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `transformer`. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
| """ | |
| state_dict = {} | |
| if not transformer_lora_layers: | |
| raise ValueError("You must pass `transformer_lora_layers`.") | |
| if transformer_lora_layers: | |
| state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | |
| # Save the model | |
| cls.write_lora_layers( | |
| state_dict=state_dict, | |
| save_directory=save_directory, | |
| is_main_process=is_main_process, | |
| weight_name=weight_name, | |
| save_function=save_function, | |
| safe_serialization=safe_serialization, | |
| ) | |
| def fuse_lora( | |
| self, | |
| components: List[str] = ["transformer"], | |
| lora_scale: float = 1.0, | |
| safe_fusing: bool = False, | |
| adapter_names: Optional[List[str]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
| lora_scale (`float`, defaults to 1.0): | |
| Controls how much to influence the outputs with the LoRA parameters. | |
| safe_fusing (`bool`, defaults to `False`): | |
| Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
| adapter_names (`List[str]`, *optional*): | |
| Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
| Example: | |
| ```py | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
| pipeline.fuse_lora(lora_scale=0.7) | |
| ``` | |
| """ | |
| super().fuse_lora( | |
| components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
| ) | |
| def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): | |
| r""" | |
| Reverses the effect of | |
| [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
| unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | |
| """ | |
| super().unfuse_lora(components=components) | |
| class SanaLoraLoaderMixin(LoraBaseMixin): | |
| r""" | |
| Load LoRA layers into [`SanaTransformer2DModel`]. Specific to [`SanaPipeline`]. | |
| """ | |
| _lora_loadable_modules = ["transformer"] | |
| transformer_name = TRANSFORMER_NAME | |
| # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict | |
| def lora_state_dict( | |
| cls, | |
| pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
| **kwargs, | |
| ): | |
| r""" | |
| Return state dict for lora weights and the network alphas. | |
| <Tip warning={true}> | |
| We support loading A1111 formatted LoRA checkpoints in a limited capacity. | |
| This function is experimental and might change in the future. | |
| </Tip> | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
| with [`ModelMixin.save_pretrained`]. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| """ | |
| # Load the main state dict first which has the LoRA layers for either of | |
| # transformer and text encoder or both. | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| state_dict = _fetch_state_dict( | |
| pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
| weight_name=weight_name, | |
| use_safetensors=use_safetensors, | |
| local_files_only=local_files_only, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| allow_pickle=allow_pickle, | |
| ) | |
| is_dora_scale_present = any("dora_scale" in k for k in state_dict) | |
| if is_dora_scale_present: | |
| warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | |
| logger.warning(warn_msg) | |
| state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | |
| return state_dict | |
| # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights | |
| def load_lora_weights( | |
| self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | |
| ): | |
| """ | |
| Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | |
| `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See | |
| [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | |
| dict is loaded into `self.transformer`. | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| kwargs (`dict`, *optional*): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| """ | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for this method.") | |
| low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | |
| if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # if a dict is passed, copy it instead of modifying it inplace | |
| if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
| # First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
| state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | |
| is_correct_format = all("lora" in key for key in state_dict.keys()) | |
| if not is_correct_format: | |
| raise ValueError("Invalid LoRA checkpoint.") | |
| self.load_lora_into_transformer( | |
| state_dict, | |
| transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SanaTransformer2DModel | |
| def load_lora_into_transformer( | |
| cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `transformer`. | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
| into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
| encoder lora layers. | |
| transformer (`SanaTransformer2DModel`): | |
| The Transformer model to load the LoRA layers into. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # Load the layers corresponding to transformer. | |
| logger.info(f"Loading {cls.transformer_name}.") | |
| transformer.load_lora_adapter( | |
| state_dict, | |
| network_alphas=None, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights | |
| def save_lora_weights( | |
| cls, | |
| save_directory: Union[str, os.PathLike], | |
| transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = True, | |
| ): | |
| r""" | |
| Save the LoRA parameters corresponding to the UNet and text encoder. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
| transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `transformer`. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
| """ | |
| state_dict = {} | |
| if not transformer_lora_layers: | |
| raise ValueError("You must pass `transformer_lora_layers`.") | |
| if transformer_lora_layers: | |
| state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | |
| # Save the model | |
| cls.write_lora_layers( | |
| state_dict=state_dict, | |
| save_directory=save_directory, | |
| is_main_process=is_main_process, | |
| weight_name=weight_name, | |
| save_function=save_function, | |
| safe_serialization=safe_serialization, | |
| ) | |
| def fuse_lora( | |
| self, | |
| components: List[str] = ["transformer"], | |
| lora_scale: float = 1.0, | |
| safe_fusing: bool = False, | |
| adapter_names: Optional[List[str]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
| lora_scale (`float`, defaults to 1.0): | |
| Controls how much to influence the outputs with the LoRA parameters. | |
| safe_fusing (`bool`, defaults to `False`): | |
| Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
| adapter_names (`List[str]`, *optional*): | |
| Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
| Example: | |
| ```py | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
| pipeline.fuse_lora(lora_scale=0.7) | |
| ``` | |
| """ | |
| super().fuse_lora( | |
| components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
| ) | |
| def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): | |
| r""" | |
| Reverses the effect of | |
| [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
| unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | |
| """ | |
| super().unfuse_lora(components=components) | |
| class HunyuanVideoLoraLoaderMixin(LoraBaseMixin): | |
| r""" | |
| Load LoRA layers into [`HunyuanVideoTransformer3DModel`]. Specific to [`HunyuanVideoPipeline`]. | |
| """ | |
| _lora_loadable_modules = ["transformer"] | |
| transformer_name = TRANSFORMER_NAME | |
| def lora_state_dict( | |
| cls, | |
| pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
| **kwargs, | |
| ): | |
| r""" | |
| Return state dict for lora weights and the network alphas. | |
| <Tip warning={true}> | |
| We support loading original format HunyuanVideo LoRA checkpoints. | |
| This function is experimental and might change in the future. | |
| </Tip> | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
| with [`ModelMixin.save_pretrained`]. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| """ | |
| # Load the main state dict first which has the LoRA layers for either of | |
| # transformer and text encoder or both. | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| state_dict = _fetch_state_dict( | |
| pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
| weight_name=weight_name, | |
| use_safetensors=use_safetensors, | |
| local_files_only=local_files_only, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| allow_pickle=allow_pickle, | |
| ) | |
| is_dora_scale_present = any("dora_scale" in k for k in state_dict) | |
| if is_dora_scale_present: | |
| warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | |
| logger.warning(warn_msg) | |
| state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | |
| is_original_hunyuan_video = any("img_attn_qkv" in k for k in state_dict) | |
| if is_original_hunyuan_video: | |
| state_dict = _convert_hunyuan_video_lora_to_diffusers(state_dict) | |
| return state_dict | |
| # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights | |
| def load_lora_weights( | |
| self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | |
| ): | |
| """ | |
| Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | |
| `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See | |
| [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | |
| dict is loaded into `self.transformer`. | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| kwargs (`dict`, *optional*): | |
| See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
| """ | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for this method.") | |
| low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | |
| if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # if a dict is passed, copy it instead of modifying it inplace | |
| if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
| # First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
| state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | |
| is_correct_format = all("lora" in key for key in state_dict.keys()) | |
| if not is_correct_format: | |
| raise ValueError("Invalid LoRA checkpoint.") | |
| self.load_lora_into_transformer( | |
| state_dict, | |
| transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, | |
| adapter_name=adapter_name, | |
| _pipeline=self, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HunyuanVideoTransformer3DModel | |
| def load_lora_into_transformer( | |
| cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | |
| ): | |
| """ | |
| This will load the LoRA layers specified in `state_dict` into `transformer`. | |
| Parameters: | |
| state_dict (`dict`): | |
| A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
| into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
| encoder lora layers. | |
| transformer (`HunyuanVideoTransformer3DModel`): | |
| The Transformer model to load the LoRA layers into. | |
| adapter_name (`str`, *optional*): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| low_cpu_mem_usage (`bool`, *optional*): | |
| Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | |
| weights. | |
| """ | |
| if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | |
| raise ValueError( | |
| "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | |
| ) | |
| # Load the layers corresponding to transformer. | |
| logger.info(f"Loading {cls.transformer_name}.") | |
| transformer.load_lora_adapter( | |
| state_dict, | |
| network_alphas=None, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| low_cpu_mem_usage=low_cpu_mem_usage, | |
| ) | |
| # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights | |
| def save_lora_weights( | |
| cls, | |
| save_directory: Union[str, os.PathLike], | |
| transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = True, | |
| ): | |
| r""" | |
| Save the LoRA parameters corresponding to the UNet and text encoder. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
| transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `transformer`. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
| """ | |
| state_dict = {} | |
| if not transformer_lora_layers: | |
| raise ValueError("You must pass `transformer_lora_layers`.") | |
| if transformer_lora_layers: | |
| state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | |
| # Save the model | |
| cls.write_lora_layers( | |
| state_dict=state_dict, | |
| save_directory=save_directory, | |
| is_main_process=is_main_process, | |
| weight_name=weight_name, | |
| save_function=save_function, | |
| safe_serialization=safe_serialization, | |
| ) | |
| def fuse_lora( | |
| self, | |
| components: List[str] = ["transformer"], | |
| lora_scale: float = 1.0, | |
| safe_fusing: bool = False, | |
| adapter_names: Optional[List[str]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
| lora_scale (`float`, defaults to 1.0): | |
| Controls how much to influence the outputs with the LoRA parameters. | |
| safe_fusing (`bool`, defaults to `False`): | |
| Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
| adapter_names (`List[str]`, *optional*): | |
| Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
| Example: | |
| ```py | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
| pipeline.fuse_lora(lora_scale=0.7) | |
| ``` | |
| """ | |
| super().fuse_lora( | |
| components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
| ) | |
| def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): | |
| r""" | |
| Reverses the effect of | |
| [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
| <Tip warning={true}> | |
| This is an experimental API. | |
| </Tip> | |
| Args: | |
| components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
| unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | |
| """ | |
| super().unfuse_lora(components=components) | |
| class LoraLoaderMixin(StableDiffusionLoraLoaderMixin): | |
| def __init__(self, *args, **kwargs): | |
| deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead." | |
| deprecate("LoraLoaderMixin", "1.0.0", deprecation_message) | |
| super().__init__(*args, **kwargs) | |