Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from ..utils import deprecate | |
| from ..utils.import_utils import is_torch_npu_available, is_torch_version | |
| if is_torch_npu_available(): | |
| import torch_npu | |
| ACTIVATION_FUNCTIONS = { | |
| "swish": nn.SiLU(), | |
| "silu": nn.SiLU(), | |
| "mish": nn.Mish(), | |
| "gelu": nn.GELU(), | |
| "relu": nn.ReLU(), | |
| } | |
| def get_activation(act_fn: str) -> nn.Module: | |
| """Helper function to get activation function from string. | |
| Args: | |
| act_fn (str): Name of activation function. | |
| Returns: | |
| nn.Module: Activation function. | |
| """ | |
| act_fn = act_fn.lower() | |
| if act_fn in ACTIVATION_FUNCTIONS: | |
| return ACTIVATION_FUNCTIONS[act_fn] | |
| else: | |
| raise ValueError(f"Unsupported activation function: {act_fn}") | |
| class FP32SiLU(nn.Module): | |
| r""" | |
| SiLU activation function with input upcasted to torch.float32. | |
| """ | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
| return F.silu(inputs.float(), inplace=False).to(inputs.dtype) | |
| class GELU(nn.Module): | |
| r""" | |
| GELU activation function with tanh approximation support with `approximate="tanh"`. | |
| Parameters: | |
| dim_in (`int`): The number of channels in the input. | |
| dim_out (`int`): The number of channels in the output. | |
| approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation. | |
| bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
| """ | |
| def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out, bias=bias) | |
| self.approximate = approximate | |
| def gelu(self, gate: torch.Tensor) -> torch.Tensor: | |
| if gate.device.type == "mps" and is_torch_version("<", "2.0.0"): | |
| # fp16 gelu not supported on mps before torch 2.0 | |
| return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) | |
| return F.gelu(gate, approximate=self.approximate) | |
| def forward(self, hidden_states): | |
| hidden_states = self.proj(hidden_states) | |
| hidden_states = self.gelu(hidden_states) | |
| return hidden_states | |
| class GEGLU(nn.Module): | |
| r""" | |
| A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. | |
| Parameters: | |
| dim_in (`int`): The number of channels in the input. | |
| dim_out (`int`): The number of channels in the output. | |
| bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
| """ | |
| def __init__(self, dim_in: int, dim_out: int, bias: bool = True): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias) | |
| def gelu(self, gate: torch.Tensor) -> torch.Tensor: | |
| if gate.device.type == "mps" and is_torch_version("<", "2.0.0"): | |
| # fp16 gelu not supported on mps before torch 2.0 | |
| return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) | |
| return F.gelu(gate) | |
| def forward(self, hidden_states, *args, **kwargs): | |
| if len(args) > 0 or kwargs.get("scale", None) is not None: | |
| deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
| deprecate("scale", "1.0.0", deprecation_message) | |
| hidden_states = self.proj(hidden_states) | |
| if is_torch_npu_available(): | |
| # using torch_npu.npu_geglu can run faster and save memory on NPU. | |
| return torch_npu.npu_geglu(hidden_states, dim=-1, approximate=1)[0] | |
| else: | |
| hidden_states, gate = hidden_states.chunk(2, dim=-1) | |
| return hidden_states * self.gelu(gate) | |
| class SwiGLU(nn.Module): | |
| r""" | |
| A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. It's similar to `GEGLU` | |
| but uses SiLU / Swish instead of GeLU. | |
| Parameters: | |
| dim_in (`int`): The number of channels in the input. | |
| dim_out (`int`): The number of channels in the output. | |
| bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
| """ | |
| def __init__(self, dim_in: int, dim_out: int, bias: bool = True): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias) | |
| self.activation = nn.SiLU() | |
| def forward(self, hidden_states): | |
| hidden_states = self.proj(hidden_states) | |
| hidden_states, gate = hidden_states.chunk(2, dim=-1) | |
| return hidden_states * self.activation(gate) | |
| class ApproximateGELU(nn.Module): | |
| r""" | |
| The approximate form of the Gaussian Error Linear Unit (GELU). For more details, see section 2 of this | |
| [paper](https://arxiv.org/abs/1606.08415). | |
| Parameters: | |
| dim_in (`int`): The number of channels in the input. | |
| dim_out (`int`): The number of channels in the output. | |
| bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
| """ | |
| def __init__(self, dim_in: int, dim_out: int, bias: bool = True): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out, bias=bias) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.proj(x) | |
| return x * torch.sigmoid(1.702 * x) | |
| class LinearActivation(nn.Module): | |
| def __init__(self, dim_in: int, dim_out: int, bias: bool = True, activation: str = "silu"): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out, bias=bias) | |
| self.activation = get_activation(activation) | |
| def forward(self, hidden_states): | |
| hidden_states = self.proj(hidden_states) | |
| return self.activation(hidden_states) | |