Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import functools | |
| import math | |
| import flax.linen as nn | |
| import jax | |
| import jax.numpy as jnp | |
| def _query_chunk_attention(query, key, value, precision, key_chunk_size: int = 4096): | |
| """Multi-head dot product attention with a limited number of queries.""" | |
| num_kv, num_heads, k_features = key.shape[-3:] | |
| v_features = value.shape[-1] | |
| key_chunk_size = min(key_chunk_size, num_kv) | |
| query = query / jnp.sqrt(k_features) | |
| def summarize_chunk(query, key, value): | |
| attn_weights = jnp.einsum("...qhd,...khd->...qhk", query, key, precision=precision) | |
| max_score = jnp.max(attn_weights, axis=-1, keepdims=True) | |
| max_score = jax.lax.stop_gradient(max_score) | |
| exp_weights = jnp.exp(attn_weights - max_score) | |
| exp_values = jnp.einsum("...vhf,...qhv->...qhf", value, exp_weights, precision=precision) | |
| max_score = jnp.einsum("...qhk->...qh", max_score) | |
| return (exp_values, exp_weights.sum(axis=-1), max_score) | |
| def chunk_scanner(chunk_idx): | |
| # julienne key array | |
| key_chunk = jax.lax.dynamic_slice( | |
| operand=key, | |
| start_indices=[0] * (key.ndim - 3) + [chunk_idx, 0, 0], # [...,k,h,d] | |
| slice_sizes=list(key.shape[:-3]) + [key_chunk_size, num_heads, k_features], # [...,k,h,d] | |
| ) | |
| # julienne value array | |
| value_chunk = jax.lax.dynamic_slice( | |
| operand=value, | |
| start_indices=[0] * (value.ndim - 3) + [chunk_idx, 0, 0], # [...,v,h,d] | |
| slice_sizes=list(value.shape[:-3]) + [key_chunk_size, num_heads, v_features], # [...,v,h,d] | |
| ) | |
| return summarize_chunk(query, key_chunk, value_chunk) | |
| chunk_values, chunk_weights, chunk_max = jax.lax.map(f=chunk_scanner, xs=jnp.arange(0, num_kv, key_chunk_size)) | |
| global_max = jnp.max(chunk_max, axis=0, keepdims=True) | |
| max_diffs = jnp.exp(chunk_max - global_max) | |
| chunk_values *= jnp.expand_dims(max_diffs, axis=-1) | |
| chunk_weights *= max_diffs | |
| all_values = chunk_values.sum(axis=0) | |
| all_weights = jnp.expand_dims(chunk_weights, -1).sum(axis=0) | |
| return all_values / all_weights | |
| def jax_memory_efficient_attention( | |
| query, key, value, precision=jax.lax.Precision.HIGHEST, query_chunk_size: int = 1024, key_chunk_size: int = 4096 | |
| ): | |
| r""" | |
| Flax Memory-efficient multi-head dot product attention. https://arxiv.org/abs/2112.05682v2 | |
| https://github.com/AminRezaei0x443/memory-efficient-attention | |
| Args: | |
| query (`jnp.ndarray`): (batch..., query_length, head, query_key_depth_per_head) | |
| key (`jnp.ndarray`): (batch..., key_value_length, head, query_key_depth_per_head) | |
| value (`jnp.ndarray`): (batch..., key_value_length, head, value_depth_per_head) | |
| precision (`jax.lax.Precision`, *optional*, defaults to `jax.lax.Precision.HIGHEST`): | |
| numerical precision for computation | |
| query_chunk_size (`int`, *optional*, defaults to 1024): | |
| chunk size to divide query array value must divide query_length equally without remainder | |
| key_chunk_size (`int`, *optional*, defaults to 4096): | |
| chunk size to divide key and value array value must divide key_value_length equally without remainder | |
| Returns: | |
| (`jnp.ndarray`) with shape of (batch..., query_length, head, value_depth_per_head) | |
| """ | |
| num_q, num_heads, q_features = query.shape[-3:] | |
| def chunk_scanner(chunk_idx, _): | |
| # julienne query array | |
| query_chunk = jax.lax.dynamic_slice( | |
| operand=query, | |
| start_indices=([0] * (query.ndim - 3)) + [chunk_idx, 0, 0], # [...,q,h,d] | |
| slice_sizes=list(query.shape[:-3]) + [min(query_chunk_size, num_q), num_heads, q_features], # [...,q,h,d] | |
| ) | |
| return ( | |
| chunk_idx + query_chunk_size, # unused ignore it | |
| _query_chunk_attention( | |
| query=query_chunk, key=key, value=value, precision=precision, key_chunk_size=key_chunk_size | |
| ), | |
| ) | |
| _, res = jax.lax.scan( | |
| f=chunk_scanner, | |
| init=0, | |
| xs=None, | |
| length=math.ceil(num_q / query_chunk_size), # start counter # stop counter | |
| ) | |
| return jnp.concatenate(res, axis=-3) # fuse the chunked result back | |
| class FlaxAttention(nn.Module): | |
| r""" | |
| A Flax multi-head attention module as described in: https://arxiv.org/abs/1706.03762 | |
| Parameters: | |
| query_dim (:obj:`int`): | |
| Input hidden states dimension | |
| heads (:obj:`int`, *optional*, defaults to 8): | |
| Number of heads | |
| dim_head (:obj:`int`, *optional*, defaults to 64): | |
| Hidden states dimension inside each head | |
| dropout (:obj:`float`, *optional*, defaults to 0.0): | |
| Dropout rate | |
| use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): | |
| enable memory efficient attention https://arxiv.org/abs/2112.05682 | |
| split_head_dim (`bool`, *optional*, defaults to `False`): | |
| Whether to split the head dimension into a new axis for the self-attention computation. In most cases, | |
| enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. | |
| dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
| Parameters `dtype` | |
| """ | |
| query_dim: int | |
| heads: int = 8 | |
| dim_head: int = 64 | |
| dropout: float = 0.0 | |
| use_memory_efficient_attention: bool = False | |
| split_head_dim: bool = False | |
| dtype: jnp.dtype = jnp.float32 | |
| def setup(self): | |
| inner_dim = self.dim_head * self.heads | |
| self.scale = self.dim_head**-0.5 | |
| # Weights were exported with old names {to_q, to_k, to_v, to_out} | |
| self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_q") | |
| self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_k") | |
| self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_v") | |
| self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name="to_out_0") | |
| self.dropout_layer = nn.Dropout(rate=self.dropout) | |
| def reshape_heads_to_batch_dim(self, tensor): | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
| tensor = jnp.transpose(tensor, (0, 2, 1, 3)) | |
| tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) | |
| return tensor | |
| def reshape_batch_dim_to_heads(self, tensor): | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
| tensor = jnp.transpose(tensor, (0, 2, 1, 3)) | |
| tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size) | |
| return tensor | |
| def __call__(self, hidden_states, context=None, deterministic=True): | |
| context = hidden_states if context is None else context | |
| query_proj = self.query(hidden_states) | |
| key_proj = self.key(context) | |
| value_proj = self.value(context) | |
| if self.split_head_dim: | |
| b = hidden_states.shape[0] | |
| query_states = jnp.reshape(query_proj, (b, -1, self.heads, self.dim_head)) | |
| key_states = jnp.reshape(key_proj, (b, -1, self.heads, self.dim_head)) | |
| value_states = jnp.reshape(value_proj, (b, -1, self.heads, self.dim_head)) | |
| else: | |
| query_states = self.reshape_heads_to_batch_dim(query_proj) | |
| key_states = self.reshape_heads_to_batch_dim(key_proj) | |
| value_states = self.reshape_heads_to_batch_dim(value_proj) | |
| if self.use_memory_efficient_attention: | |
| query_states = query_states.transpose(1, 0, 2) | |
| key_states = key_states.transpose(1, 0, 2) | |
| value_states = value_states.transpose(1, 0, 2) | |
| # this if statement create a chunk size for each layer of the unet | |
| # the chunk size is equal to the query_length dimension of the deepest layer of the unet | |
| flatten_latent_dim = query_states.shape[-3] | |
| if flatten_latent_dim % 64 == 0: | |
| query_chunk_size = int(flatten_latent_dim / 64) | |
| elif flatten_latent_dim % 16 == 0: | |
| query_chunk_size = int(flatten_latent_dim / 16) | |
| elif flatten_latent_dim % 4 == 0: | |
| query_chunk_size = int(flatten_latent_dim / 4) | |
| else: | |
| query_chunk_size = int(flatten_latent_dim) | |
| hidden_states = jax_memory_efficient_attention( | |
| query_states, key_states, value_states, query_chunk_size=query_chunk_size, key_chunk_size=4096 * 4 | |
| ) | |
| hidden_states = hidden_states.transpose(1, 0, 2) | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| else: | |
| # compute attentions | |
| if self.split_head_dim: | |
| attention_scores = jnp.einsum("b t n h, b f n h -> b n f t", key_states, query_states) | |
| else: | |
| attention_scores = jnp.einsum("b i d, b j d->b i j", query_states, key_states) | |
| attention_scores = attention_scores * self.scale | |
| attention_probs = nn.softmax(attention_scores, axis=-1 if self.split_head_dim else 2) | |
| # attend to values | |
| if self.split_head_dim: | |
| hidden_states = jnp.einsum("b n f t, b t n h -> b f n h", attention_probs, value_states) | |
| b = hidden_states.shape[0] | |
| hidden_states = jnp.reshape(hidden_states, (b, -1, self.heads * self.dim_head)) | |
| else: | |
| hidden_states = jnp.einsum("b i j, b j d -> b i d", attention_probs, value_states) | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| hidden_states = self.proj_attn(hidden_states) | |
| return self.dropout_layer(hidden_states, deterministic=deterministic) | |
| class FlaxBasicTransformerBlock(nn.Module): | |
| r""" | |
| A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in: | |
| https://arxiv.org/abs/1706.03762 | |
| Parameters: | |
| dim (:obj:`int`): | |
| Inner hidden states dimension | |
| n_heads (:obj:`int`): | |
| Number of heads | |
| d_head (:obj:`int`): | |
| Hidden states dimension inside each head | |
| dropout (:obj:`float`, *optional*, defaults to 0.0): | |
| Dropout rate | |
| only_cross_attention (`bool`, defaults to `False`): | |
| Whether to only apply cross attention. | |
| dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
| Parameters `dtype` | |
| use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): | |
| enable memory efficient attention https://arxiv.org/abs/2112.05682 | |
| split_head_dim (`bool`, *optional*, defaults to `False`): | |
| Whether to split the head dimension into a new axis for the self-attention computation. In most cases, | |
| enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. | |
| """ | |
| dim: int | |
| n_heads: int | |
| d_head: int | |
| dropout: float = 0.0 | |
| only_cross_attention: bool = False | |
| dtype: jnp.dtype = jnp.float32 | |
| use_memory_efficient_attention: bool = False | |
| split_head_dim: bool = False | |
| def setup(self): | |
| # self attention (or cross_attention if only_cross_attention is True) | |
| self.attn1 = FlaxAttention( | |
| self.dim, | |
| self.n_heads, | |
| self.d_head, | |
| self.dropout, | |
| self.use_memory_efficient_attention, | |
| self.split_head_dim, | |
| dtype=self.dtype, | |
| ) | |
| # cross attention | |
| self.attn2 = FlaxAttention( | |
| self.dim, | |
| self.n_heads, | |
| self.d_head, | |
| self.dropout, | |
| self.use_memory_efficient_attention, | |
| self.split_head_dim, | |
| dtype=self.dtype, | |
| ) | |
| self.ff = FlaxFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype) | |
| self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) | |
| self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) | |
| self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) | |
| self.dropout_layer = nn.Dropout(rate=self.dropout) | |
| def __call__(self, hidden_states, context, deterministic=True): | |
| # self attention | |
| residual = hidden_states | |
| if self.only_cross_attention: | |
| hidden_states = self.attn1(self.norm1(hidden_states), context, deterministic=deterministic) | |
| else: | |
| hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic) | |
| hidden_states = hidden_states + residual | |
| # cross attention | |
| residual = hidden_states | |
| hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic) | |
| hidden_states = hidden_states + residual | |
| # feed forward | |
| residual = hidden_states | |
| hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic) | |
| hidden_states = hidden_states + residual | |
| return self.dropout_layer(hidden_states, deterministic=deterministic) | |
| class FlaxTransformer2DModel(nn.Module): | |
| r""" | |
| A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in: | |
| https://arxiv.org/pdf/1506.02025.pdf | |
| Parameters: | |
| in_channels (:obj:`int`): | |
| Input number of channels | |
| n_heads (:obj:`int`): | |
| Number of heads | |
| d_head (:obj:`int`): | |
| Hidden states dimension inside each head | |
| depth (:obj:`int`, *optional*, defaults to 1): | |
| Number of transformers block | |
| dropout (:obj:`float`, *optional*, defaults to 0.0): | |
| Dropout rate | |
| use_linear_projection (`bool`, defaults to `False`): tbd | |
| only_cross_attention (`bool`, defaults to `False`): tbd | |
| dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
| Parameters `dtype` | |
| use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): | |
| enable memory efficient attention https://arxiv.org/abs/2112.05682 | |
| split_head_dim (`bool`, *optional*, defaults to `False`): | |
| Whether to split the head dimension into a new axis for the self-attention computation. In most cases, | |
| enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. | |
| """ | |
| in_channels: int | |
| n_heads: int | |
| d_head: int | |
| depth: int = 1 | |
| dropout: float = 0.0 | |
| use_linear_projection: bool = False | |
| only_cross_attention: bool = False | |
| dtype: jnp.dtype = jnp.float32 | |
| use_memory_efficient_attention: bool = False | |
| split_head_dim: bool = False | |
| def setup(self): | |
| self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5) | |
| inner_dim = self.n_heads * self.d_head | |
| if self.use_linear_projection: | |
| self.proj_in = nn.Dense(inner_dim, dtype=self.dtype) | |
| else: | |
| self.proj_in = nn.Conv( | |
| inner_dim, | |
| kernel_size=(1, 1), | |
| strides=(1, 1), | |
| padding="VALID", | |
| dtype=self.dtype, | |
| ) | |
| self.transformer_blocks = [ | |
| FlaxBasicTransformerBlock( | |
| inner_dim, | |
| self.n_heads, | |
| self.d_head, | |
| dropout=self.dropout, | |
| only_cross_attention=self.only_cross_attention, | |
| dtype=self.dtype, | |
| use_memory_efficient_attention=self.use_memory_efficient_attention, | |
| split_head_dim=self.split_head_dim, | |
| ) | |
| for _ in range(self.depth) | |
| ] | |
| if self.use_linear_projection: | |
| self.proj_out = nn.Dense(inner_dim, dtype=self.dtype) | |
| else: | |
| self.proj_out = nn.Conv( | |
| inner_dim, | |
| kernel_size=(1, 1), | |
| strides=(1, 1), | |
| padding="VALID", | |
| dtype=self.dtype, | |
| ) | |
| self.dropout_layer = nn.Dropout(rate=self.dropout) | |
| def __call__(self, hidden_states, context, deterministic=True): | |
| batch, height, width, channels = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| if self.use_linear_projection: | |
| hidden_states = hidden_states.reshape(batch, height * width, channels) | |
| hidden_states = self.proj_in(hidden_states) | |
| else: | |
| hidden_states = self.proj_in(hidden_states) | |
| hidden_states = hidden_states.reshape(batch, height * width, channels) | |
| for transformer_block in self.transformer_blocks: | |
| hidden_states = transformer_block(hidden_states, context, deterministic=deterministic) | |
| if self.use_linear_projection: | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = hidden_states.reshape(batch, height, width, channels) | |
| else: | |
| hidden_states = hidden_states.reshape(batch, height, width, channels) | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = hidden_states + residual | |
| return self.dropout_layer(hidden_states, deterministic=deterministic) | |
| class FlaxFeedForward(nn.Module): | |
| r""" | |
| Flax module that encapsulates two Linear layers separated by a non-linearity. It is the counterpart of PyTorch's | |
| [`FeedForward`] class, with the following simplifications: | |
| - The activation function is currently hardcoded to a gated linear unit from: | |
| https://arxiv.org/abs/2002.05202 | |
| - `dim_out` is equal to `dim`. | |
| - The number of hidden dimensions is hardcoded to `dim * 4` in [`FlaxGELU`]. | |
| Parameters: | |
| dim (:obj:`int`): | |
| Inner hidden states dimension | |
| dropout (:obj:`float`, *optional*, defaults to 0.0): | |
| Dropout rate | |
| dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
| Parameters `dtype` | |
| """ | |
| dim: int | |
| dropout: float = 0.0 | |
| dtype: jnp.dtype = jnp.float32 | |
| def setup(self): | |
| # The second linear layer needs to be called | |
| # net_2 for now to match the index of the Sequential layer | |
| self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype) | |
| self.net_2 = nn.Dense(self.dim, dtype=self.dtype) | |
| def __call__(self, hidden_states, deterministic=True): | |
| hidden_states = self.net_0(hidden_states, deterministic=deterministic) | |
| hidden_states = self.net_2(hidden_states) | |
| return hidden_states | |
| class FlaxGEGLU(nn.Module): | |
| r""" | |
| Flax implementation of a Linear layer followed by the variant of the gated linear unit activation function from | |
| https://arxiv.org/abs/2002.05202. | |
| Parameters: | |
| dim (:obj:`int`): | |
| Input hidden states dimension | |
| dropout (:obj:`float`, *optional*, defaults to 0.0): | |
| Dropout rate | |
| dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
| Parameters `dtype` | |
| """ | |
| dim: int | |
| dropout: float = 0.0 | |
| dtype: jnp.dtype = jnp.float32 | |
| def setup(self): | |
| inner_dim = self.dim * 4 | |
| self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype) | |
| self.dropout_layer = nn.Dropout(rate=self.dropout) | |
| def __call__(self, hidden_states, deterministic=True): | |
| hidden_states = self.proj(hidden_states) | |
| hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis=2) | |
| return self.dropout_layer(hidden_linear * nn.gelu(hidden_gelu), deterministic=deterministic) | |