Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time, torch, gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
3 |
+
|
4 |
+
MODEL_ID = "HuggingFaceTB/SmolVLM2-256M-Video-Instruct"
|
5 |
+
|
6 |
+
# Pick a safe float dtype for your GPU (Ampere+ -> bf16; else fp16; CPU -> fp32)
|
7 |
+
if torch.cuda.is_available():
|
8 |
+
major, _ = torch.cuda.get_device_capability()
|
9 |
+
FLOAT_DTYPE = torch.bfloat16 if major >= 8 else torch.float16
|
10 |
+
else:
|
11 |
+
FLOAT_DTYPE = torch.float32
|
12 |
+
|
13 |
+
# Load once (faster subsequent runs)
|
14 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
15 |
+
MODEL_ID, torch_dtype=FLOAT_DTYPE, device_map="auto"
|
16 |
+
)
|
17 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
18 |
+
|
19 |
+
def run_video(video_path, prompt, max_new_tokens=256, backend="decord", num_frames=32):
|
20 |
+
"""video_path is a local file path; backend in {'decord','pyav','opencv','torchvision'}"""
|
21 |
+
messages = [{
|
22 |
+
"role": "user",
|
23 |
+
"content": [
|
24 |
+
{"type": "video", "path": video_path},
|
25 |
+
{"type": "text", "text": prompt},
|
26 |
+
],
|
27 |
+
}]
|
28 |
+
|
29 |
+
inputs = processor.apply_chat_template(
|
30 |
+
messages,
|
31 |
+
add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt",
|
32 |
+
video_load_backend=backend, num_frames=num_frames
|
33 |
+
)
|
34 |
+
|
35 |
+
# Move tensors to device; keep integer token IDs as int64; cast only floats
|
36 |
+
for k, v in list(inputs.items()):
|
37 |
+
if isinstance(v, torch.Tensor):
|
38 |
+
inputs[k] = v.to(model.device)
|
39 |
+
for k, v in list(inputs.items()):
|
40 |
+
if isinstance(v, torch.Tensor) and torch.is_floating_point(v):
|
41 |
+
inputs[k] = v.to(dtype=FLOAT_DTYPE)
|
42 |
+
|
43 |
+
gen_kwargs = {
|
44 |
+
"do_sample": False,
|
45 |
+
"max_new_tokens": max_new_tokens,
|
46 |
+
"eos_token_id": getattr(model.generation_config, "eos_token_id", None) \
|
47 |
+
or getattr(processor.tokenizer, "eos_token_id", None),
|
48 |
+
"pad_token_id": getattr(model.generation_config, "pad_token_id", None) \
|
49 |
+
or getattr(processor.tokenizer, "pad_token_id", None),
|
50 |
+
}
|
51 |
+
|
52 |
+
if torch.cuda.is_available():
|
53 |
+
torch.cuda.reset_peak_memory_stats()
|
54 |
+
|
55 |
+
t0 = time.perf_counter()
|
56 |
+
out_ids = model.generate(**inputs, **gen_kwargs)
|
57 |
+
latency = time.perf_counter() - t0
|
58 |
+
|
59 |
+
text = processor.batch_decode(out_ids, skip_special_tokens=True)[0]
|
60 |
+
vram_gb = (torch.cuda.max_memory_allocated()/1e9) if torch.cuda.is_available() else 0.0
|
61 |
+
tokens_generated = int(out_ids.shape[-1] - inputs["input_ids"].shape[-1])
|
62 |
+
|
63 |
+
# minimal pretty string
|
64 |
+
pretty = (f"Latency: {latency:.3f}s | VRAM: {vram_gb:.2f} GB | Tokens: {tokens_generated}\n"
|
65 |
+
f"{'-'*40}\n{text.strip()}")
|
66 |
+
return pretty
|
67 |
+
|
68 |
+
def infer(video, prompt, tokens, frames, backend):
|
69 |
+
# gr.Video gives a dict or path depending on version; normalize:
|
70 |
+
path = video if isinstance(video, str) else getattr(video, "name", None)
|
71 |
+
if not path:
|
72 |
+
return "No video file received."
|
73 |
+
return run_video(path, prompt, max_new_tokens=tokens, backend=backend, num_frames=frames)
|
74 |
+
|
75 |
+
with gr.Blocks() as demo:
|
76 |
+
gr.Markdown("## SmolVLM2-256M Video Test\nUpload an MP4 and enter your prompt. "
|
77 |
+
"This Space mirrors your Colab test.")
|
78 |
+
with gr.Row():
|
79 |
+
vid = gr.Video(label="Upload MP4", sources=["upload"], include_audio=False)
|
80 |
+
with gr.Column():
|
81 |
+
prompt = gr.Textbox(label="Prompt", value="Describe this video to me", lines=2)
|
82 |
+
tokens = gr.Slider(32, 512, value=256, step=16, label="max_new_tokens")
|
83 |
+
frames = gr.Slider(8, 64, value=32, step=8, label="num_frames (sampling)")
|
84 |
+
backend = gr.Dropdown(choices=["decord","pyav","opencv","torchvision"],
|
85 |
+
value="decord", label="video_load_backend")
|
86 |
+
btn = gr.Button("Run")
|
87 |
+
out = gr.Textbox(label="Output", lines=15)
|
88 |
+
btn.click(fn=infer, inputs=[vid, prompt, tokens, frames, backend], outputs=out)
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
demo.launch()
|