Spaces:
Running
Running
Refactor dataset.py: Update import path for HuggingFaceEmbeddings, streamline DatasetManager initialization, and enhance download_vector_store method with improved error handling and logging.
Browse files- src/knowledge_base/dataset.py +119 -143
src/knowledge_base/dataset.py
CHANGED
@@ -10,7 +10,7 @@ from datetime import datetime
|
|
10 |
import logging
|
11 |
from huggingface_hub import HfApi, HfFolder
|
12 |
from langchain_community.vectorstores import FAISS
|
13 |
-
from
|
14 |
from config.settings import (
|
15 |
VECTOR_STORE_PATH,
|
16 |
HF_TOKEN,
|
@@ -26,155 +26,59 @@ from config.settings import (
|
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
28 |
class DatasetManager:
|
29 |
-
def __init__(self,
|
30 |
-
|
31 |
-
self.
|
32 |
-
self.
|
33 |
-
|
34 |
-
|
35 |
-
self.vector_store_path = DATASET_VECTOR_STORE_PATH
|
36 |
-
self.chat_history_path = DATASET_CHAT_HISTORY_PATH
|
37 |
-
self.fine_tuned_path = DATASET_FINE_TUNED_PATH
|
38 |
-
self.annotations_path = DATASET_ANNOTATIONS_PATH
|
39 |
-
|
40 |
-
# Добавьте этот метод в класс DatasetManager в файле src/knowledge_base/dataset.py
|
41 |
-
|
42 |
-
def download_vector_store(self) -> Tuple[bool, Union[FAISS, str]]:
|
43 |
-
"""Download vector store from dataset"""
|
44 |
-
try:
|
45 |
-
with tempfile.TemporaryDirectory() as temp_dir:
|
46 |
-
logger.debug(f"Downloading to temporary directory: {temp_dir}")
|
47 |
-
|
48 |
-
try:
|
49 |
-
# Download vector store files
|
50 |
-
index_path = self.api.hf_hub_download(
|
51 |
-
repo_id=self.dataset_name,
|
52 |
-
filename="vector_store/index.faiss",
|
53 |
-
repo_type="dataset",
|
54 |
-
local_dir=temp_dir
|
55 |
-
)
|
56 |
-
logger.debug(f"Downloaded index.faiss to: {index_path}")
|
57 |
-
|
58 |
-
config_path = self.api.hf_hub_download(
|
59 |
-
repo_id=self.dataset_name,
|
60 |
-
filename="vector_store/index.pkl",
|
61 |
-
repo_type="dataset",
|
62 |
-
local_dir=temp_dir
|
63 |
-
)
|
64 |
-
logger.debug(f"Downloaded index.pkl to: {config_path}")
|
65 |
-
|
66 |
-
# Initialize embeddings
|
67 |
-
embeddings = HuggingFaceEmbeddings(
|
68 |
-
model_name=EMBEDDING_MODEL,
|
69 |
-
model_kwargs={'device': 'cpu'}
|
70 |
-
)
|
71 |
-
|
72 |
-
# Load vector store
|
73 |
-
vector_store = FAISS.load_local(
|
74 |
-
folder_path=os.path.join(temp_dir, "vector_store"),
|
75 |
-
embeddings=embeddings
|
76 |
-
)
|
77 |
-
|
78 |
-
return True, vector_store
|
79 |
-
|
80 |
-
except Exception as e:
|
81 |
-
logger.error(f"Error downloading vector store: {str(e)}")
|
82 |
-
return False, f"Error downloading vector store: {str(e)}"
|
83 |
-
|
84 |
-
except Exception as e:
|
85 |
-
logger.error(f"Error in download_vector_store: {str(e)}")
|
86 |
-
return False, str(e)
|
87 |
|
88 |
-
def
|
89 |
-
|
90 |
-
Получает дату последнего обновления базы знаний.
|
91 |
-
|
92 |
-
Returns:
|
93 |
-
str: Дата последнего обновления в формате ISO или None, если информация недоступна
|
94 |
-
"""
|
95 |
-
try:
|
96 |
-
# Попробуем получить метаданные из датасета
|
97 |
-
api = HfApi(token=self.hf_token)
|
98 |
-
|
99 |
-
# Сначала проверим, есть ли специальный файл метаданных
|
100 |
-
files = api.list_repo_files(
|
101 |
-
repo_id=self.dataset_id,
|
102 |
-
repo_type="dataset"
|
103 |
-
)
|
104 |
-
|
105 |
-
metadata_file = "vector_store/metadata.json"
|
106 |
-
|
107 |
-
if metadata_file in files:
|
108 |
-
# Скачиваем файл метаданных
|
109 |
-
temp_dir = tempfile.mkdtemp()
|
110 |
-
metadata_path = os.path.join(temp_dir, "metadata.json")
|
111 |
-
|
112 |
-
api.hf_hub_download(
|
113 |
-
repo_id=self.dataset_id,
|
114 |
-
repo_type="dataset",
|
115 |
-
filename=metadata_file,
|
116 |
-
local_dir=temp_dir,
|
117 |
-
local_dir_use_symlinks=False
|
118 |
-
)
|
119 |
-
|
120 |
-
# Открываем и читаем дату из метаданных
|
121 |
-
with open(metadata_path, 'r') as f:
|
122 |
-
metadata = json.load(f)
|
123 |
-
return metadata.get("last_updated", None)
|
124 |
-
|
125 |
-
# Если специальный файл не найден, можно использовать дату последнего коммита
|
126 |
-
# для директории vector_store
|
127 |
-
last_commit = api.get_repo_info(
|
128 |
-
repo_id=self.dataset_id,
|
129 |
-
repo_type="dataset"
|
130 |
-
)
|
131 |
-
|
132 |
-
# Получаем дату последнего коммита
|
133 |
-
if hasattr(last_commit, "lastModified"):
|
134 |
-
return last_commit.lastModified
|
135 |
-
|
136 |
-
return None
|
137 |
-
except Exception as e:
|
138 |
-
logger.error(f"Error getting last update date: {str(e)}")
|
139 |
-
return None
|
140 |
-
|
141 |
-
def init_dataset_structure(self) -> Tuple[bool, str]:
|
142 |
-
"""
|
143 |
-
Initialize dataset structure with required directories
|
144 |
-
|
145 |
-
Returns:
|
146 |
-
(success, message)
|
147 |
-
"""
|
148 |
try:
|
149 |
-
|
150 |
-
|
151 |
-
self.api.repo_info(repo_id=self.dataset_name, repo_type="dataset")
|
152 |
-
except Exception:
|
153 |
-
# Create repository if it doesn't exist
|
154 |
-
self.api.create_repo(repo_id=self.dataset_name, repo_type="dataset", private=True)
|
155 |
-
|
156 |
-
# Create empty .gitkeep files to maintain structure
|
157 |
-
directories = ["vector_store", "chat_history", "documents"]
|
158 |
-
|
159 |
-
for directory in directories:
|
160 |
-
with tempfile.NamedTemporaryFile(delete=False) as temp:
|
161 |
-
temp_path = temp.name
|
162 |
|
163 |
try:
|
164 |
-
|
165 |
-
|
166 |
-
path_in_repo=f"{directory}/.gitkeep",
|
167 |
repo_id=self.dataset_name,
|
168 |
-
|
|
|
|
|
169 |
)
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
except Exception as e:
|
177 |
-
|
|
|
178 |
|
179 |
def upload_vector_store(self, vector_store: FAISS) -> Tuple[bool, str]:
|
180 |
"""
|
@@ -285,6 +189,78 @@ def get_last_update_date(self):
|
|
285 |
logger.error(f"Error uploading vector store: {str(e)}")
|
286 |
return False, f"Error uploading vector store: {str(e)}"
|
287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
def download_vector_store(self) -> Tuple[bool, Union[FAISS, str]]:
|
289 |
"""Download vector store from dataset"""
|
290 |
try:
|
|
|
10 |
import logging
|
11 |
from huggingface_hub import HfApi, HfFolder
|
12 |
from langchain_community.vectorstores import FAISS
|
13 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
14 |
from config.settings import (
|
15 |
VECTOR_STORE_PATH,
|
16 |
HF_TOKEN,
|
|
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
28 |
class DatasetManager:
|
29 |
+
def __init__(self, token: str = None, dataset_id: str = None):
|
30 |
+
"""Initialize dataset manager"""
|
31 |
+
self.hf_token = token or HF_TOKEN
|
32 |
+
self.dataset_id = dataset_id or DATASET_ID
|
33 |
+
self.dataset_name = self.dataset_id
|
34 |
+
self.api = HfApi(token=self.hf_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
def download_vector_store(self) -> Tuple[bool, Union[FAISS, str]]:
|
37 |
+
"""Download vector store from dataset"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
try:
|
39 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
40 |
+
logger.debug(f"Downloading to temporary directory: {temp_dir}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
try:
|
43 |
+
# Download vector store files
|
44 |
+
index_path = self.api.hf_hub_download(
|
|
|
45 |
repo_id=self.dataset_name,
|
46 |
+
filename="vector_store/index.faiss",
|
47 |
+
repo_type="dataset",
|
48 |
+
local_dir=temp_dir
|
49 |
)
|
50 |
+
logger.debug(f"Downloaded index.faiss to: {index_path}")
|
51 |
+
|
52 |
+
config_path = self.api.hf_hub_download(
|
53 |
+
repo_id=self.dataset_name,
|
54 |
+
filename="vector_store/index.pkl",
|
55 |
+
repo_type="dataset",
|
56 |
+
local_dir=temp_dir
|
57 |
+
)
|
58 |
+
logger.debug(f"Downloaded index.pkl to: {config_path}")
|
59 |
+
|
60 |
+
# Initialize embeddings
|
61 |
+
embeddings = HuggingFaceEmbeddings(
|
62 |
+
model_name=EMBEDDING_MODEL,
|
63 |
+
model_kwargs={'device': 'cpu'}
|
64 |
+
)
|
65 |
+
|
66 |
+
# Load vector store
|
67 |
+
vector_store = FAISS.load_local(
|
68 |
+
folder_path=os.path.dirname(index_path),
|
69 |
+
embeddings=embeddings,
|
70 |
+
allow_dangerous_deserialization=True
|
71 |
+
)
|
72 |
+
|
73 |
+
return True, vector_store
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
logger.error(f"Error downloading vector store: {str(e)}")
|
77 |
+
return False, f"Error downloading vector store: {str(e)}"
|
78 |
+
|
79 |
except Exception as e:
|
80 |
+
logger.error(f"Error in download_vector_store: {str(e)}")
|
81 |
+
return False, str(e)
|
82 |
|
83 |
def upload_vector_store(self, vector_store: FAISS) -> Tuple[bool, str]:
|
84 |
"""
|
|
|
189 |
logger.error(f"Error uploading vector store: {str(e)}")
|
190 |
return False, f"Error uploading vector store: {str(e)}"
|
191 |
|
192 |
+
def get_last_update_date(self) -> Optional[str]:
|
193 |
+
"""
|
194 |
+
Get the date of last knowledge base update
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
str: Last update date in ISO format or None if not found
|
198 |
+
"""
|
199 |
+
try:
|
200 |
+
# Try to get metadata from dataset
|
201 |
+
files = self.api.list_repo_files(
|
202 |
+
repo_id=self.dataset_id,
|
203 |
+
repo_type="dataset"
|
204 |
+
)
|
205 |
+
|
206 |
+
if "vector_store/metadata.json" in files:
|
207 |
+
try:
|
208 |
+
metadata_file = self.api.hf_hub_download(
|
209 |
+
repo_id=self.dataset_id,
|
210 |
+
filename="vector_store/metadata.json",
|
211 |
+
repo_type="dataset"
|
212 |
+
)
|
213 |
+
|
214 |
+
with open(metadata_file, 'r') as f:
|
215 |
+
metadata = json.load(f)
|
216 |
+
return metadata.get("last_update")
|
217 |
+
except:
|
218 |
+
return None
|
219 |
+
|
220 |
+
return None
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
logger.error(f"Error getting last update date: {str(e)}")
|
224 |
+
return None
|
225 |
+
|
226 |
+
def init_dataset_structure(self) -> Tuple[bool, str]:
|
227 |
+
"""
|
228 |
+
Initialize dataset structure with required directories
|
229 |
+
|
230 |
+
Returns:
|
231 |
+
(success, message)
|
232 |
+
"""
|
233 |
+
try:
|
234 |
+
# Check if repository exists
|
235 |
+
try:
|
236 |
+
self.api.repo_info(repo_id=self.dataset_name, repo_type="dataset")
|
237 |
+
except Exception:
|
238 |
+
# Create repository if it doesn't exist
|
239 |
+
self.api.create_repo(repo_id=self.dataset_name, repo_type="dataset", private=True)
|
240 |
+
|
241 |
+
# Create empty .gitkeep files to maintain structure
|
242 |
+
directories = ["vector_store", "chat_history", "documents"]
|
243 |
+
|
244 |
+
for directory in directories:
|
245 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp:
|
246 |
+
temp_path = temp.name
|
247 |
+
|
248 |
+
try:
|
249 |
+
self.api.upload_file(
|
250 |
+
path_or_fileobj=temp_path,
|
251 |
+
path_in_repo=f"{directory}/.gitkeep",
|
252 |
+
repo_id=self.dataset_name,
|
253 |
+
repo_type="dataset"
|
254 |
+
)
|
255 |
+
finally:
|
256 |
+
if os.path.exists(temp_path):
|
257 |
+
os.remove(temp_path)
|
258 |
+
|
259 |
+
return True, "Dataset structure initialized successfully"
|
260 |
+
|
261 |
+
except Exception as e:
|
262 |
+
return False, f"Error initializing dataset structure: {str(e)}"
|
263 |
+
|
264 |
def download_vector_store(self) -> Tuple[bool, Union[FAISS, str]]:
|
265 |
"""Download vector store from dataset"""
|
266 |
try:
|