Rupesh386 commited on
Commit
8f18b81
·
verified ·
1 Parent(s): 7efc9c5

Delete src/test.py

Browse files
Files changed (1) hide show
  1. src/test.py +0 -116
src/test.py DELETED
@@ -1,116 +0,0 @@
1
- ''''
2
- Author : Rupesh Garsondiya
3
- github : @Rupeshgarsondiya
4
- Organization : L.J University
5
-
6
- '''
7
-
8
- import time
9
- import streamlit as st
10
- import pandas as pd
11
- import numpy as np
12
- from sklearn.preprocessing import StandardScaler
13
- from train import *
14
-
15
-
16
- class test :
17
-
18
- def __init__(self):
19
- pass
20
-
21
- def predict_data(self):
22
-
23
- st.sidebar.title("Select Parameter ")
24
- mt = Model_Train()
25
- S_algo,Pipeline = mt.train_model()
26
- df = None
27
- options = ["Google Pixel 5", "OnePlus 9", "Samsung Galaxy S21", "Xiaomi Mi 11",'iPhone 12']
28
-
29
- selected_option = st.sidebar.selectbox("Select phone model :", options)
30
-
31
- if selected_option in options:
32
- encoded_model = [1 if i == selected_option else 0 for i in options]
33
- df = pd.DataFrame([encoded_model], columns=options)
34
-
35
-
36
-
37
- options1 = ["Android",'IOS']
38
-
39
-
40
-
41
-
42
- if selected_option =='iPhone 12':
43
- selected_option1 = st.sidebar.selectbox("Select OS :", 'IOS')
44
- encoded_os = [0,1]
45
- else :
46
- encoded_os = [1,0]
47
- selected_option1 = st.sidebar.selectbox("Select OS :", 'Android')
48
- df[options1] = encoded_os
49
-
50
-
51
- options2 = ['Female','Male']
52
- selected_option2 = st.sidebar.radio("Select Gender :", options2)
53
- encoded_gender = [1 if i == selected_option2 else 0 for i in options2]
54
- df[options2] = encoded_gender
55
-
56
-
57
- app_time = st.sidebar.number_input('Enter app time : ',min_value=0.0,max_value=24.0,value=0.0)
58
- df['App_Time(hours/day)'] = app_time
59
-
60
-
61
- screen_time = st.sidebar.number_input('Enter your screen time : ',min_value=0.0,max_value=24.0,value=0.0)
62
- df['screen_Time(hours/day)'] = screen_time
63
-
64
-
65
- battary = st.sidebar.number_input('Enter battary drain(mAh) : ',min_value=100.0,max_value=6000.0,value=100.0)
66
- df['Battery_Drain(mAh)'] = battary
67
-
68
-
69
- no_app = st.sidebar.number_input('Enter number of apps installed : ',min_value=5.0,max_value=50.0,value=5.0)
70
- df['Installed_app'] = no_app
71
-
72
-
73
- data_use = st.sidebar.number_input('Enter data usage (GB) : ',min_value=0.0,max_value=10.0,value=0.0)
74
- df['Data_Usage(GB)'] = data_use
75
-
76
-
77
- age = st.sidebar.number_input('Enter your age : ',min_value=15.0,max_value=100.0,value=15.0)
78
- df['Age'] = age
79
-
80
- if st.button("Submit"):
81
- st.write("Processing...")
82
- time.sleep(2)
83
- prediction = S_algo.predict(df)
84
- if prediction==1:
85
-
86
- st.write('Output : Occasional Users')
87
- elif prediction==2:
88
- st.write('Output : Casual Users ')
89
- elif prediction==3:
90
- st.write('Output : content consumer : ')
91
- elif prediction==4:
92
- st.write('Output : Social Media Enthusiasts')
93
- else :
94
- st.write('Output : Power Users')
95
-
96
-
97
-
98
-
99
-
100
-
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
-
109
-
110
-
111
-
112
-
113
-
114
-
115
-
116
-