Rupesh386 commited on
Commit
c24e6de
·
verified ·
1 Parent(s): a73ace9

Delete train.py

Browse files
Files changed (1) hide show
  1. train.py +0 -81
train.py DELETED
@@ -1,81 +0,0 @@
1
- '''
2
- author : Rupesh Garsondiya
3
- github : @Rupeshgarsondiya
4
- Organization : L.J University
5
- '''
6
-
7
-
8
-
9
-
10
-
11
- import pandas as pd
12
- import streamlit as st
13
- import numpy as np
14
- from features.build_features import *
15
- from sklearn.model_selection import train_test_split
16
- from sklearn.linear_model import LogisticRegression
17
- from sklearn.ensemble import RandomForestClassifier
18
- from sklearn.tree import DecisionTreeClassifier
19
- from sklearn.neighbors import KNeighborsClassifier
20
- from sklearn.svm import SVC
21
- from sklearn.metrics import accuracy_score
22
-
23
-
24
-
25
- class Model_Train:
26
- def __init__(self) -> None:
27
- pass
28
-
29
- '''load_data() fuction use for to get the clean data or feature transformed data '''
30
- def load_data(self):
31
- pass
32
-
33
-
34
- def train_model(self):
35
- st.markdown(
36
- """
37
- <style>
38
- body {
39
- background-color: lightblue;
40
- }
41
- </style>
42
- """,
43
- unsafe_allow_html=True
44
- )
45
- fe = FeatureEngineering()
46
- x_train,x_test,y_train,y_test,pipeline = fe.get_clean_data()
47
-
48
-
49
- # Define the options for the dropdown menu
50
- options = ['Logistic Regreesion', 'Random Forest Classifier', 'Decision Tree', 'SVM','KNeighborsClassifier']
51
- # Create the dropdown menu
52
- with st.container():
53
- st.markdown('<div class="dropdown-left">', unsafe_allow_html=True)
54
- selected_option = st.sidebar.selectbox('Select Algoritham :', options)
55
- st.markdown('</div>', unsafe_allow_html=True)
56
-
57
- S_algo = object
58
- if selected_option== 'Logistic Regreesion':
59
- S_algo = LogisticRegression()
60
- S_algo.fit(x_train,y_train)
61
- ypred = S_algo.predict(x_test)
62
- elif selected_option=='Random Forest Classifier':
63
- S_algo = RandomForestClassifier(n_estimators=200,n_jobs=-1,verbose=True,max_depth=2)
64
- S_algo.fit(x_train,y_train)
65
- ypred1 = S_algo.predict(x_test)
66
- elif selected_option=='Decision Tree':
67
- S_algo = DecisionTreeClassifier(max_depth=4,max_leaf_nodes=5,min_samples_split=50)
68
- S_algo.fit(x_train,y_train)
69
- ypred2 = S_algo.predict(x_test)
70
- elif selected_option =='SVM':
71
- S_algo = SVC()
72
- S_algo.fit(x_train,y_train)
73
- ypred3 = S_algo.predict(x_test)
74
- elif selected_option=='KNeighborsClassifier':
75
- S_algo = KNeighborsClassifier()
76
- S_algo.fit(x_train,y_train)
77
- ypred4 = S_algo.predict(x_test)
78
- else:
79
- pass
80
-
81
- return S_algo,pipeline