''' author : Rupesh Garsondiya github : @Rupeshgarsondiya Organization : L.J University ''' import pandas as pd import streamlit as st import numpy as np from src.features.build_features import * from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.metrics import accuracy_score class Model_Train: def __init__(self) -> None: pass '''load_data() fuction use for to get the clean data or feature transformed data ''' def load_data(self): pass def train_model(self): st.markdown( """ """, unsafe_allow_html=True ) fe = FeatureEngineering() x_train,x_test,y_train,y_test,pipeline = fe.get_clean_data() # Define the options for the dropdown menu options = ['Logistic Regreesion', 'Random Forest Classifier', 'Decision Tree', 'SVM','KNeighborsClassifier'] # Create the dropdown menu with st.container(): st.markdown('