''' author : Rupesh Garsondiya github : @Rupeshgarsondiya Organization : L.J University ''' import pandas as pd import streamlit as st import numpy as np from src.features.build_features import * from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.metrics import accuracy_score class Model_Train: def __init__(self) -> None: pass '''load_data() fuction use for to get the clean data or feature transformed data ''' def load_data(self): pass def train_model(self): st.markdown( """ """, unsafe_allow_html=True ) fe = FeatureEngineering() x_train,x_test,y_train,y_test,pipeline = fe.get_clean_data() # Define the options for the dropdown menu options = ['Logistic Regreesion', 'Random Forest Classifier', 'Decision Tree', 'SVM','KNeighborsClassifier'] # Create the dropdown menu with st.container(): st.markdown('', unsafe_allow_html=True) S_algo = object if selected_option== 'Logistic Regreesion': S_algo = LogisticRegression() S_algo.fit(x_train,y_train) ypred = S_algo.predict(x_test) elif selected_option=='Random Forest Classifier': S_algo = RandomForestClassifier(n_estimators=200,n_jobs=-1,verbose=True,max_depth=2) S_algo.fit(x_train,y_train) ypred1 = S_algo.predict(x_test) elif selected_option=='Decision Tree': S_algo = DecisionTreeClassifier(max_depth=4,max_leaf_nodes=5,min_samples_split=50) S_algo.fit(x_train,y_train) ypred2 = S_algo.predict(x_test) elif selected_option =='SVM': S_algo = SVC() S_algo.fit(x_train,y_train) ypred3 = S_algo.predict(x_test) elif selected_option=='KNeighborsClassifier': S_algo = KNeighborsClassifier() S_algo.fit(x_train,y_train) ypred4 = S_algo.predict(x_test) else: pass return S_algo,pipeline