Spaces:
Sleeping
Sleeping
""" | |
Ryan Tietjen | |
Sep 2024 | |
Create best model for the demo | |
""" | |
import tensorflow as tf | |
from keras import layers | |
import tensorflow_hub as hub | |
class EmbeddingLayer(layers.Layer): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
# Hardcode the module URL directly within the layer | |
# self.module_url = "https://tfhub.dev/google/universal-sentence-encoder/4" | |
url = "https://tfhub.dev/google/universal-sentence-encoder/4" | |
self.embed_model = hub.KerasLayer(url, trainable=False, name="universal_sentence_encoder") | |
def call(self, inputs): | |
return self.embed_model(inputs) | |
def get_config(self): | |
config = super().get_config() | |
# The URL is now a fixed part of the layer, so it can be included in the config for completeness | |
# config.update({'module_url': self.module_url}) | |
return config | |
def create_token_model(token_embed): | |
input_layer = layers.Input(shape=[], dtype=tf.string) | |
embedding_layer = EmbeddingLayer() | |
token_embeddings = embedding_layer(input_layer) | |
output_layer = layers.Dense(128, activation="relu")(token_embeddings) | |
model = tf.keras.Model(input_layer, output_layer) | |
return model | |
def create_character_vectorizer_model(char_embed, char_vectorizer): | |
input_layer = layers.Input(shape=(1,), dtype=tf.string) | |
char_vectors = char_vectorizer(input_layer) # vectorize text inputs | |
char_embedding = char_embed(char_vectors) # create embedding | |
output_layer = layers.Bidirectional(layers.LSTM(32))(char_embedding) | |
model = tf.keras.Model(input_layer, output_layer) | |
return model | |
def create_line_number_model(input_shape, name): | |
input_layer = layers.Input(shape=(input_shape,), dtype=tf.int32, name=name) | |
output_layer = layers.Dense(32, activation="relu")(input_layer) | |
model = tf.keras.Model(input_layer, output_layer) | |
return model | |
def tribrid_model(num_classes, token_embed, char_embed, text_vectorizer): | |
token_model = create_token_model(token_embed) | |
character_vectorizer_model = create_character_vectorizer_model(char_embed, text_vectorizer) | |
line_number_model = create_line_number_model(15, "line_number") | |
total_lines_model = create_line_number_model(20, "total_lines") | |
hybrid_model = layers.Concatenate(name="hybrid")([token_model.output, | |
character_vectorizer_model.output]) | |
dense_layer = layers.Dense(256, activation="relu")(hybrid_model) | |
dense_layer = layers.Dropout(0.5)(dense_layer) | |
tribrid_model = layers.Concatenate(name="tribrid") ([line_number_model.output, total_lines_model.output, dense_layer]) | |
output_layer = layers.Dense(num_classes, activation="softmax")(tribrid_model) | |
model = tf.keras.Model([line_number_model.input, total_lines_model.input, token_model.input, character_vectorizer_model.input], output_layer) | |
model.compile(loss=tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.2), | |
optimizer=tf.keras.optimizers.Adam(), | |
metrics=["accuracy"]) | |
return model |