""" Ryan Tietjen Sep 2024 Create best model for the demo """ import tensorflow as tf from keras import layers import tensorflow_hub as hub class EmbeddingLayer(layers.Layer): def __init__(self, **kwargs): super().__init__(**kwargs) # Hardcode the module URL directly within the layer # self.module_url = "https://tfhub.dev/google/universal-sentence-encoder/4" url = "https://tfhub.dev/google/universal-sentence-encoder/4" self.embed_model = hub.KerasLayer(url, trainable=False, name="universal_sentence_encoder") def call(self, inputs): return self.embed_model(inputs) def get_config(self): config = super().get_config() # The URL is now a fixed part of the layer, so it can be included in the config for completeness # config.update({'module_url': self.module_url}) return config def create_token_model(token_embed): input_layer = layers.Input(shape=[], dtype=tf.string) embedding_layer = EmbeddingLayer() token_embeddings = embedding_layer(input_layer) output_layer = layers.Dense(128, activation="relu")(token_embeddings) model = tf.keras.Model(input_layer, output_layer) return model def create_character_vectorizer_model(char_embed, char_vectorizer): input_layer = layers.Input(shape=(1,), dtype=tf.string) char_vectors = char_vectorizer(input_layer) # vectorize text inputs char_embedding = char_embed(char_vectors) # create embedding output_layer = layers.Bidirectional(layers.LSTM(32))(char_embedding) model = tf.keras.Model(input_layer, output_layer) return model def create_line_number_model(input_shape, name): input_layer = layers.Input(shape=(input_shape,), dtype=tf.int32, name=name) output_layer = layers.Dense(32, activation="relu")(input_layer) model = tf.keras.Model(input_layer, output_layer) return model def tribrid_model(num_classes, token_embed, char_embed, text_vectorizer): token_model = create_token_model(token_embed) character_vectorizer_model = create_character_vectorizer_model(char_embed, text_vectorizer) line_number_model = create_line_number_model(15, "line_number") total_lines_model = create_line_number_model(20, "total_lines") hybrid_model = layers.Concatenate(name="hybrid")([token_model.output, character_vectorizer_model.output]) dense_layer = layers.Dense(256, activation="relu")(hybrid_model) dense_layer = layers.Dropout(0.5)(dense_layer) tribrid_model = layers.Concatenate(name="tribrid") ([line_number_model.output, total_lines_model.output, dense_layer]) output_layer = layers.Dense(num_classes, activation="softmax")(tribrid_model) model = tf.keras.Model([line_number_model.input, total_lines_model.input, token_model.input, character_vectorizer_model.input], output_layer) model.compile(loss=tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.2), optimizer=tf.keras.optimizers.Adam(), metrics=["accuracy"]) return model