Spaces:
Sleeping
Sleeping
File size: 6,850 Bytes
e9321e7 4847885 c145044 e9321e7 c145044 4847885 e9321e7 c145044 4847885 e9321e7 0333d1a b932080 e9321e7 0333d1a b932080 e9321e7 4847885 c145044 e9321e7 4847885 e9321e7 4847885 e9321e7 b932080 e9321e7 b932080 8ac4182 b932080 4847885 b932080 4847885 b932080 49ac7ad 4847885 e9321e7 b932080 e9321e7 b932080 e9321e7 8ac4182 e9321e7 c145044 e9321e7 c145044 e9321e7 4847885 e9321e7 c145044 02bcd1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import gradio as gr
from PIL import Image
from dataclasses import dataclass
import random
from transformers import pipeline
from huggingface_hub import InferenceClient, login
import os
@dataclass
class PatientMetadata:
age: int
smoking_status: str
family_history: bool
menopause_status: str
previous_mammogram: bool
breast_density: str
hormone_therapy: bool
class SimplifiedBreastAnalyzer:
def __init__(self, hf_token: str):
"""Initialize the analyzer with models."""
print("Initializing system...")
# Login to Hugging Face
login(token=hf_token)
# Initialize vision pipelines for tumor detection and size classification
self.tumor_classifier = pipeline(
"image-classification",
model="SIATCN/vit_tumor_classifier",
device="cpu"
)
self.size_classifier = pipeline(
"image-classification",
model="SIATCN/vit_tumor_radius_detection_finetuned",
device="cpu"
)
# Initialize Mistral client for report generation
self.report_generator = InferenceClient(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
token=hf_token
)
print("Initialization complete!")
def _generate_synthetic_metadata(self) -> PatientMetadata:
"""Generate realistic patient metadata for breast cancer screening."""
age = random.randint(40, 75)
smoking_status = random.choice(["Never Smoker", "Former Smoker", "Current Smoker"])
family_history = random.choice([True, False])
menopause_status = "Post-menopausal" if age > 50 else "Pre-menopausal"
previous_mammogram = random.choice([True, False])
breast_density = random.choice([
"A: Almost entirely fatty",
"B: Scattered fibroglandular",
"C: Heterogeneously dense",
"D: Extremely dense"
])
hormone_therapy = random.choice([True, False])
return PatientMetadata(
age=age,
smoking_status=smoking_status,
family_history=family_history,
menopause_status=menopause_status,
previous_mammogram=previous_mammogram,
breast_density=breast_density,
hormone_therapy=hormone_therapy
)
def _process_image(self, image: Image.Image) -> Image.Image:
"""Process input image for model consumption."""
if image.mode != 'RGB':
image = image.convert('RGB')
return image.resize((224, 224))
def _generate_medical_report(self, has_tumor: bool, tumor_size: str, metadata: PatientMetadata) -> str:
"""Generate a medical report using Mistral."""
prompt = f"""<s>[INST] Generate a detailed medical report for this breast imaging scan:
Scan Results:
- Finding: {'Abnormal area detected' if has_tumor else 'No abnormalities detected'}
{f'- Size of abnormal area: {tumor_size} cm' if has_tumor else ''}
Patient Information:
- Age: {metadata.age} years
- Risk factors: {', '.join([
'family history of breast cancer' if metadata.family_history else '',
f'{metadata.smoking_status.lower()}',
'currently on hormone therapy' if metadata.hormone_therapy else ''
]).strip(', ')}
- Breast density: {metadata.breast_density}
- Previous mammogram: {'Yes' if metadata.previous_mammogram else 'No'}
- Menopausal status: {metadata.menopause_status}
Please provide:
1. A clear interpretation of the findings
2. A specific recommendation for next steps based on the findings and risk factors
3. Recommended follow-up timeline [/INST]</s>"""
# Generate response using Mistral
response = self.report_generator.text_generation(
prompt,
max_new_tokens=512,
temperature=0.3,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True,
seed=42
)
return f"FINDINGS AND RECOMMENDATIONS:\n{response}"
def analyze(self, image: Image.Image) -> str:
"""Main analysis pipeline."""
try:
processed_image = self._process_image(image)
metadata = self._generate_synthetic_metadata()
# Detect tumor
tumor_result = self.tumor_classifier(processed_image)
has_tumor = tumor_result[0]['label'] == 'tumor'
# Measure size if tumor detected
size_result = self.size_classifier(processed_image)
tumor_size = size_result[0]['label'].replace('tumor-', '')
# Generate report
report = self._generate_medical_report(has_tumor, tumor_size, metadata)
return f"""SCAN RESULTS:
{'⚠️ Abnormal area detected' if has_tumor else '✓ No abnormalities detected'}
{f'Size of abnormal area: {tumor_size} cm' if has_tumor else ''}
PATIENT INFORMATION:
• Age: {metadata.age} years
• Risk Factors: {', '.join([
'family history of breast cancer' if metadata.family_history else '',
metadata.smoking_status.lower(),
'currently on hormone therapy' if metadata.hormone_therapy else ''
]).strip(', ')}
• Breast Density: {metadata.breast_density}
• Previous Mammogram: {'Yes' if metadata.previous_mammogram else 'No'}
• Menopausal Status: {metadata.menopause_status}
{report}"""
except Exception as e:
import traceback
return f"Error during analysis: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
def create_interface(hf_token: str) -> gr.Interface:
"""Create the Gradio interface."""
analyzer = SimplifiedBreastAnalyzer(hf_token)
interface = gr.Interface(
fn=analyzer.analyze,
inputs=[
gr.Image(type="pil", label="Upload Breast Image for Analysis")
],
outputs=[
gr.Textbox(label="Analysis Results", lines=20)
],
title="Breast Imaging Analysis System",
description="""Upload a breast image for comprehensive analysis. The system will:
1. Detect the presence of tumors
2. Classify tumor size if present
3. Generate a detailed medical report with recommendations""",
)
return interface
if __name__ == "__main__":
print("Starting application...")
# Load HuggingFace token from secrets
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
if not HF_TOKEN:
raise ValueError("Please set HUGGINGFACE_TOKEN environment variable")
interface = create_interface(HF_TOKEN)
# Modified launch parameters for Spaces
interface.launch(
debug=True,
server_name="0.0.0.0", # Required for Spaces
server_port=7860, # Standard port for Spaces
share=False # Disable sharing as it's not needed on Spaces
) |