import argparse
import os

import torch

import sys
sys.path.insert(0, os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "Evaluation"))
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, \
    DEFAULT_VIDEO_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from serve.utils import load_image, image_ext, video_ext

from PIL import Image

import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer



def main(args):
    # Model
    disable_torch_init()

    model_name = get_model_name_from_path(args.model_path)
    tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name,
                                                                     args.load_8bit, args.load_4bit,
                                                                     device=args.device, cache_dir=args.cache_dir)
    image_processor, video_processor = processor['image'], processor['video']
    if 'llama-2' in model_name.lower():
        conv_mode = "llava_llama_2"
    elif "v1" in model_name.lower():
        conv_mode = "llava_v1"
    elif "mpt" in model_name.lower():
        conv_mode = "mpt"
    else:
        conv_mode = "llava_v0"

    if args.conv_mode is not None and conv_mode != args.conv_mode:
        print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
    else:
        args.conv_mode = conv_mode

    conv = conv_templates[args.conv_mode].copy()
    if "mpt" in model_name.lower():
        roles = ('user', 'assistant')
    else:
        roles = conv.roles

    tensor = []
    special_token = []
    args.file = args.file if isinstance(args.file, list) else [args.file]
    for file in args.file:
        if os.path.splitext(file)[-1].lower() in video_ext: # video extension
            video_tensor = video_processor(file, return_tensors='pt')['pixel_values'][0].to(model.device, dtype=torch.float16)
            special_token += [DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames
        elif os.path.splitext(os.listdir(file)[0]).lower() in image_ext: # frames folder
            vidframes_list = sorted(glob(file + '/*'))
            images = load_frames(vidframes_list, model.get_video_tower().config.num_frames)
            # Similar operation in model_worker.py
            video_tensor = process_images(images, image_processor, args)
            video_tensor = video_tensor.to(model.device, dtype=torch.float16)
            video_tensor = video_tensor.unsqueeze(0)              
            special_token += [DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames
        else:
            raise ValueError(f'Support video of {video_ext} and frames of {image_ext}, but found {os.path.splitext(file)[-1].lower()}')
        print(video_tensor.shape)
        tensor.append(video_tensor)




    while True:
        try:
            inp = input(f"{roles[0]}: ")
        except EOFError:
            inp = ""
        if not inp:
            print("exit...")
            break

        print(f"{roles[1]}: ", end="")

        if file is not None:
            # first message
            if getattr(model.config, "mm_use_im_start_end", False):
                inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
                # inp = ''.join([DEFAULT_IM_START_TOKEN + i + DEFAULT_IM_END_TOKEN for i in special_token]) + '\n' + inp
            else:
                inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
                # inp = ''.join(special_token) + '\n' + inp
            conv.append_message(conv.roles[0], inp)
            file = None
        else:
            # later messages
            conv.append_message(conv.roles[0], inp)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
        streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=tensor,  # video as fake images
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                max_new_tokens=args.max_new_tokens,
                streamer=streamer,
                use_cache=True,
                stopping_criteria=[stopping_criteria])

        outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
        conv.messages[-1][-1] = outputs

        if args.debug:
            print("\n", {"prompt": prompt, "outputs": outputs}, "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="LanguageBind/Video-LLaVA-7B")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--cache-dir", type=str, default=None)
    parser.add_argument("--file", nargs='+', type=str, required=True)
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--conv-mode", type=str, default=None)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--max-new-tokens", type=int, default=512)
    parser.add_argument("--load-8bit", action="store_true")
    parser.add_argument("--load-4bit", action="store_true")
    parser.add_argument("--debug", action="store_true")
    args = parser.parse_args()
    main(args)