Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
@@ -6,7 +58,8 @@ import os
|
|
6 |
# Configuration
|
7 |
HEIGHT, WIDTH = 224, 224
|
8 |
NUM_CLASSES = 6
|
9 |
-
LABELS = [
|
|
|
10 |
from tensorflow_addons.metrics import F1Score
|
11 |
from keras.utils import custom_object_scope
|
12 |
|
@@ -15,19 +68,15 @@ with custom_object_scope({'Addons>F1Score': F1Score}):
|
|
15 |
|
16 |
|
17 |
def classify_image(inp):
|
18 |
-
|
19 |
-
|
20 |
-
# Ensure input is resized to expected shape
|
21 |
inp = tf.image.resize(inp, [HEIGHT, WIDTH])
|
22 |
-
inp = tf.cast(inp, tf.float32)
|
23 |
inp = tf.keras.applications.nasnet.preprocess_input(inp)
|
24 |
-
inp = tf.expand_dims(inp, axis=0)
|
25 |
-
|
26 |
-
# Prediction
|
27 |
-
prediction = model.predict(inp)
|
28 |
-
|
29 |
-
return {LABELS[i]: float(f"{prediction[0][i]:.6f}") for i in range(NUM_CLASSES)}
|
30 |
|
|
|
|
|
|
|
31 |
|
32 |
example_list = [
|
33 |
["Examples/Untitled.png"],
|
@@ -36,6 +85,7 @@ example_list = [
|
|
36 |
["Examples/Untitled5.png"]
|
37 |
]
|
38 |
|
|
|
39 |
iface = gr.Interface(
|
40 |
fn=classify_image,
|
41 |
inputs=gr.Image(
|
@@ -51,4 +101,5 @@ iface = gr.Interface(
|
|
51 |
)
|
52 |
|
53 |
if __name__ == "__main__":
|
54 |
-
iface.launch(debug=False,share=True)
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import tensorflow as tf
|
3 |
+
# import numpy as np
|
4 |
+
# import os
|
5 |
+
|
6 |
+
# # Configuration
|
7 |
+
# HEIGHT, WIDTH = 224, 224
|
8 |
+
# NUM_CLASSES = 6
|
9 |
+
# LABELS = [ "McDonalds","Burger King","Subway", "Starbucks", "KFC","Other"]
|
10 |
+
# from tensorflow_addons.metrics import F1Score
|
11 |
+
# from keras.utils import custom_object_scope
|
12 |
+
|
13 |
+
# with custom_object_scope({'Addons>F1Score': F1Score}):
|
14 |
+
# model = tf.keras.models.load_model('best_model.h5')
|
15 |
+
|
16 |
+
|
17 |
+
# def classify_image(inp):
|
18 |
+
# np.random.seed(143)
|
19 |
+
|
20 |
+
# # Ensure input is resized to expected shape
|
21 |
+
# inp = tf.image.resize(inp, [HEIGHT, WIDTH])
|
22 |
+
# inp = tf.cast(inp, tf.float32) # ensure correct dtype for preprocessing
|
23 |
+
# inp = tf.keras.applications.nasnet.preprocess_input(inp)
|
24 |
+
# inp = tf.expand_dims(inp, axis=0) # make batch dimension
|
25 |
+
|
26 |
+
# # Prediction
|
27 |
+
# prediction = model.predict(inp)
|
28 |
+
|
29 |
+
# return {LABELS[i]: float(f"{prediction[0][i]:.6f}") for i in range(NUM_CLASSES)}
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
# iface = gr.Interface(
|
35 |
+
# fn=classify_image,
|
36 |
+
# inputs=gr.Image(
|
37 |
+
# label="Input Image",
|
38 |
+
# source="upload",
|
39 |
+
# type="numpy",
|
40 |
+
# height=HEIGHT,
|
41 |
+
# width=WIDTH
|
42 |
+
# ),
|
43 |
+
# outputs=gr.Label(num_top_classes=4),
|
44 |
+
# title="Brand Logo Detection",
|
45 |
+
# examples=example_list
|
46 |
+
# )
|
47 |
+
|
48 |
+
# if __name__ == "__main__":
|
49 |
+
# iface.launch(debug=False,share=True)
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
import gradio as gr
|
54 |
import tensorflow as tf
|
55 |
import numpy as np
|
|
|
58 |
# Configuration
|
59 |
HEIGHT, WIDTH = 224, 224
|
60 |
NUM_CLASSES = 6
|
61 |
+
LABELS = ["McDonalds", "Burger King", "Subway", "Starbucks", "KFC", "Other"]
|
62 |
+
|
63 |
from tensorflow_addons.metrics import F1Score
|
64 |
from keras.utils import custom_object_scope
|
65 |
|
|
|
68 |
|
69 |
|
70 |
def classify_image(inp):
|
71 |
+
# Resize & preprocess
|
|
|
|
|
72 |
inp = tf.image.resize(inp, [HEIGHT, WIDTH])
|
73 |
+
inp = tf.cast(inp, tf.float32)
|
74 |
inp = tf.keras.applications.nasnet.preprocess_input(inp)
|
75 |
+
inp = tf.expand_dims(inp, axis=0)
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
# Predict
|
78 |
+
prediction = model.predict(inp)[0]
|
79 |
+
return {LABELS[i]: float(f"{prediction[i]:.6f}") for i in range(NUM_CLASSES)}
|
80 |
|
81 |
example_list = [
|
82 |
["Examples/Untitled.png"],
|
|
|
85 |
["Examples/Untitled5.png"]
|
86 |
]
|
87 |
|
88 |
+
|
89 |
iface = gr.Interface(
|
90 |
fn=classify_image,
|
91 |
inputs=gr.Image(
|
|
|
101 |
)
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
+
iface.launch(debug=False, share=True)
|
105 |
+
|