Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,708 Bytes
cb0e352 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
"""
Gradio demo for text customization with Calligrapher (the reference is uploaded by the user),
which supports multilingual text image customization.
Acknowledgement: Supported by TextFLUX: https://github.com/yyyyyxie/textflux.
"""
import os
import json
import gradio as gr
import numpy as np
from datetime import datetime
import torch
from PIL import Image
from pipeline_calligrapher import CalligrapherPipeline
from models.calligrapher import Calligrapher
from models.transformer_flux_inpainting import FluxTransformer2DModel
from utils import process_gradio_source, get_bbox_from_mask, crop_image_from_bb, resize_img_and_pad
from utils_multilingual import run_multilingual_inference
# Global settings.
with open(os.path.join(os.path.dirname(__file__), 'path_dict.json'), 'r') as f:
path_dict = json.load(f)
SAVE_DIR = path_dict['gradio_save_dir']
os.environ["GRADIO_TEMP_DIR"] = path_dict['gradio_temp_dir']
os.environ['TMPDIR'] = path_dict['gradio_temp_dir']
# Function of loading pre-trained models.
def load_models():
base_model_path = path_dict['base_model_path']
image_encoder_path = path_dict['image_encoder_path']
calligrapher_path = path_dict['calligrapher_path']
textflux_path = path_dict['textflux_path']
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder="transformer",
torch_dtype=torch.bfloat16)
# Load textflux lora weights.
state_dict, network_alphas = CalligrapherPipeline.lora_state_dict(
pretrained_model_name_or_path_or_dict=textflux_path,
return_alphas=True
)
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint!")
CalligrapherPipeline.load_lora_into_transformer(
state_dict=state_dict,
network_alphas=network_alphas,
transformer=transformer,
)
pipe = CalligrapherPipeline.from_pretrained(base_model_path, transformer=transformer,
torch_dtype=torch.bfloat16).to("cuda")
model = Calligrapher(pipe, image_encoder_path, calligrapher_path, device="cuda", num_tokens=128)
return model
# Init models.
model = load_models()
print('Model loaded!')
def process_and_generate(editor_component, reference_image, prompt, height, width,
scale, steps=50, seed=42, num_images=1):
print('Begin processing!')
# Job directory.
job_name = datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
job_dir = os.path.join(SAVE_DIR, job_name)
os.makedirs(job_dir, exist_ok=True)
# Get source, mask, and cropped images from gr.ImageEditor.
source_image, mask_image, cropped_image = process_gradio_source(editor_component)
source_image.save(os.path.join(job_dir, 'source_image.png'))
mask_image.save(os.path.join(job_dir, 'mask_image.png'))
cropped_image.save(os.path.join(job_dir, 'cropped_image.png'))
# Resize source and mask.
source_image = source_image.resize((width, height))
mask_image = mask_image.resize((width, height), Image.NEAREST)
mask_np = np.array(mask_image)
mask_np[mask_np > 0] = 255
mask_image = Image.fromarray(mask_np.astype(np.uint8))
if reference_image is None:
# If self-inpaint (no input ref): (1) get bounding box from the mask and (2) perform cropping to get the ref image.
tl, br = get_bbox_from_mask(mask_image)
# Convert irregularly shaped masks into rectangles.
reference_image = crop_image_from_bb(source_image, tl, br)
# Raw reference image before resizing.
reference_image.save(os.path.join(job_dir, 'reference_image_raw.png'))
reference_image_to_encoder = resize_img_and_pad(reference_image, target_size=(512, 512))
reference_image_to_encoder.save(os.path.join(job_dir, 'reference_to_encoder.png'))
all_generated_images = run_multilingual_inference(model, source_image, mask_image, reference_image_to_encoder,
prompt, num_steps=steps, seed=seed, num_images=num_images)
vis_all_generated_images = []
for i in range(len(all_generated_images)):
res = all_generated_images[i]
res_vis = res.crop((source_image.width, 0, res.width, res.height))
mask_vis = mask_image
res_vis.save(os.path.join(job_dir, f'result_{i}.png'))
vis_all_generated_images.append((res_vis, f"Generated #{i + 1} (Seed: {seed + i})"))
return mask_vis, reference_image_to_encoder, vis_all_generated_images
# Main gradio codes.
with gr.Blocks(theme="default", css=".image-editor img {max-width: 70%; height: 70%;}") as demo:
gr.Markdown(
"""
# 🖌️ Calligrapher: Freestyle Text Image Customization (Multilingual)
"""
)
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("### 🎨 Image Editing Panel")
editor_component = gr.ImageEditor(
label="Upload or Draw",
type="pil",
brush=gr.Brush(colors=["#FFFFFF"], default_size=30, color_mode="fixed"),
layers=True,
interactive=True,
)
gr.Markdown("### 📤 Output Result")
gallery = gr.Gallery(label="🖼️ Result Gallery")
gr.Markdown(
"""<br>
### ✨User Tips:
1. **Quality of multilingual generation.** This implementation strategy combines Calligrapher with the fine-tuned base model (textflux) without additional fine-tuning, please temper expectations regarding output quality.
2. **Speed vs Quality Trade-off.** Use fewer steps (e.g., 10-step which takes ~4s/image on a single A6000 GPU) for faster generation, but quality may be lower.
3. **Inpaint Position Freedom.** Inpainting positions are flexible - they don't necessarily need to match the original text locations in the input image.
4. **Iterative Editing.** Drag outputs from the gallery to the Image Editing Panel (clean the Editing Panel first) for quick refinements.
5. **Mask Optimization.** Adjust mask size/aspect ratio to match your desired content. The model tends to fill the masks, and harmonizes the generation with background in terms of color and lighting.
6. **Reference Image Tip.** White-background references improve style consistency - the encoder also considers background context of the given reference image.
7. **Resolution Balance.** Very high-resolution generation sometimes triggers spelling errors. 512/768px are recommended considering the model is trained under the resolution of 512.
"""
)
with gr.Column(scale=1):
gr.Markdown("### ⚙️Settings")
reference_image = gr.Image(
label="🧩 Reference Image (skip this if self-reference)",
sources=["upload"],
type="pil",
)
prompt = gr.Textbox(
label="📝 Prompt",
placeholder="你好",
value="你好"
)
with gr.Accordion("🔧 Additional Settings", open=True):
with gr.Row():
height = gr.Number(label="Height", value=512, precision=0)
width = gr.Number(label="Width", value=512, precision=0)
scale = gr.Slider(0.0, 2.0, 1.0, step=0.1, value=1.0, label="🎚️ Strength")
steps = gr.Slider(1, 100, 30, step=1, label="🔁 Steps")
with gr.Row():
seed = gr.Number(label="🎲 Seed", value=56, precision=0)
num_images = gr.Slider(1, 16, 2, step=1, label="🖼️ Sample Amount")
run_btn = gr.Button("🚀 Run", variant="primary")
mask_output = gr.Image(label="🟩 Mask Demo")
reference_demo = gr.Image(label="🧩 Reference Demo")
# Run button event.
run_btn.click(
fn=process_and_generate,
inputs=[
editor_component,
reference_image,
prompt,
height,
width,
scale,
steps,
seed,
num_images
],
outputs=[
mask_output,
reference_demo,
gallery
]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=1234, share=False)
|