Spaces:
Sleeping
Sleeping
Update constitution_py.py
Browse files- constitution_py.py +63 -24
constitution_py.py
CHANGED
|
@@ -20,13 +20,13 @@ a_llm = get_answer_llm()
|
|
| 20 |
|
| 21 |
# Load sentence transformer model once globally
|
| 22 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 23 |
-
save_dir = "
|
| 24 |
|
| 25 |
from functools import lru_cache
|
| 26 |
|
| 27 |
# Cache embeddings and index loading
|
| 28 |
@lru_cache(maxsize=1)
|
| 29 |
-
def load_embeddings_and_index(save_dir="
|
| 30 |
embedding = np.load(os.path.join(save_dir, "embeddings.npy"))
|
| 31 |
index = faiss.read_index(os.path.join(save_dir, "index.faiss"))
|
| 32 |
with open(os.path.join(save_dir, "chunks.txt"), "r", encoding="utf-8") as f:
|
|
@@ -35,11 +35,11 @@ def load_embeddings_and_index(save_dir="."):
|
|
| 35 |
|
| 36 |
|
| 37 |
similar_words = [
|
| 38 |
-
"explain", "elaborate", "describe", "clarify", "detail", "break down", "simplify", "outline",
|
| 39 |
"demonstrate", "illustrate", "interpret", "expand on", "go over", "walk through", "define",
|
| 40 |
"unpack", "decode", "shed light on", "analyze", "discuss", "make clear", "reveal", "disclose",
|
| 41 |
"comment on", "talk about", "lay out", "spell out", "express", "delve into", "explore",
|
| 42 |
-
"enlighten", "present", "review", "report", "state", "point out", "inform", "highlight"
|
| 43 |
]
|
| 44 |
|
| 45 |
def is_explanation_query(query):
|
|
@@ -48,20 +48,22 @@ def is_explanation_query(query):
|
|
| 48 |
def retrieve_relevant_chunks(query, index, chunks, top_k=5):
|
| 49 |
sub_str = "article"
|
| 50 |
numbers = re.findall(r'\d+', query)
|
| 51 |
-
|
| 52 |
if sub_str in query.lower() and numbers:
|
| 53 |
article_number = str(numbers[0])
|
| 54 |
for i, chunk in enumerate(chunks):
|
| 55 |
if chunk.lower().startswith(f"article;{article_number}"):
|
| 56 |
flag = is_explanation_query(query)
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
| 60 |
query_embedding = embedding_model.encode([query])
|
| 61 |
query_embedding = np.array(query_embedding).astype("float32")
|
| 62 |
distances, indices = index.search(query_embedding, top_k)
|
| 63 |
relevant_chunks = [chunks[i] for i in indices[0]]
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
# Prompt to refine the query
|
| 67 |
refine_prompt_template = ChatPromptTemplate.from_messages([
|
|
@@ -107,14 +109,44 @@ answer_prompt_template_query = ChatPromptTemplate.from_messages([
|
|
| 107 |
|
| 108 |
answer_chain_article = LLMChain(llm=a_llm, prompt=answer_prompt_template_query, output_parser=parser)
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
# Prompt for explanation-style answers
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
("system",
|
| 113 |
-
"You are a legal expert assistant with deep knowledge of the
|
| 114 |
-
"You will receive a user query and a set of context chunks from the
|
| 115 |
-
"Your task is to determine if the query is answerable based
|
| 116 |
"If it is, provide a structured explanation based on that context—without copying or repeating the context text verbatim. "
|
| 117 |
-
"If the information needed to answer is not found in the provided chunks, respond with a structured message indicating
|
| 118 |
),
|
| 119 |
|
| 120 |
("human",
|
|
@@ -123,17 +155,21 @@ explanation_prompt_template_query = ChatPromptTemplate.from_messages([
|
|
| 123 |
"Instructions:\n"
|
| 124 |
"1. Use only the information in the context to determine if the query can be answered.\n"
|
| 125 |
"2. DO NOT include or repeat the context text directly in your answer. Summarize or paraphrase when needed.\n"
|
| 126 |
-
"3. If the query is answerable based on the context, explain the related
|
| 127 |
-
" - Include the
|
| 128 |
-
" - Describe its meaning and how it functions within the
|
| 129 |
"4. Do NOT use real-world references, court cases, or examples.\n"
|
| 130 |
-
"5.
|
| 131 |
-
" -
|
| 132 |
-
" -
|
|
|
|
| 133 |
"{format_instructions}\n")
|
| 134 |
])
|
| 135 |
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
# Load data
|
| 139 |
embeddings, index, chunks = load_embeddings_and_index(save_dir)
|
|
@@ -148,7 +184,7 @@ def get_legal_response(query):
|
|
| 148 |
|
| 149 |
print("\nRefined Query:", refined_query)
|
| 150 |
|
| 151 |
-
relevant_chunks,
|
| 152 |
|
| 153 |
print("\nTop Relevant Chunks:")
|
| 154 |
for i, chunk in enumerate(relevant_chunks, 1):
|
|
@@ -156,9 +192,12 @@ def get_legal_response(query):
|
|
| 156 |
|
| 157 |
context = "\n\n".join(relevant_chunks)
|
| 158 |
|
| 159 |
-
if
|
| 160 |
print('okokokokokokokokokokok')
|
| 161 |
response = answer_chain_article.run(query=refined_query,context=context,format_instructions=parser.get_format_instructions())
|
|
|
|
|
|
|
|
|
|
| 162 |
else:
|
| 163 |
print('nononononononononono')
|
| 164 |
response = answer_chain_explanation.run(query=refined_query,context=context,format_instructions=parser.get_format_instructions())
|
|
@@ -167,5 +206,5 @@ def get_legal_response(query):
|
|
| 167 |
"title":response.title,
|
| 168 |
"answer": response.answer,
|
| 169 |
"is_relevant": response.is_relevant,
|
| 170 |
-
"article_number": response.article_number
|
| 171 |
}
|
|
|
|
| 20 |
|
| 21 |
# Load sentence transformer model once globally
|
| 22 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 23 |
+
save_dir = "saved_data"
|
| 24 |
|
| 25 |
from functools import lru_cache
|
| 26 |
|
| 27 |
# Cache embeddings and index loading
|
| 28 |
@lru_cache(maxsize=1)
|
| 29 |
+
def load_embeddings_and_index(save_dir="saved_data"):
|
| 30 |
embedding = np.load(os.path.join(save_dir, "embeddings.npy"))
|
| 31 |
index = faiss.read_index(os.path.join(save_dir, "index.faiss"))
|
| 32 |
with open(os.path.join(save_dir, "chunks.txt"), "r", encoding="utf-8") as f:
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
similar_words = [
|
| 38 |
+
"explain", "elaborate", "describe", "clarify", "detail", "break down", "simplify", "outline",'in simple words',
|
| 39 |
"demonstrate", "illustrate", "interpret", "expand on", "go over", "walk through", "define",
|
| 40 |
"unpack", "decode", "shed light on", "analyze", "discuss", "make clear", "reveal", "disclose",
|
| 41 |
"comment on", "talk about", "lay out", "spell out", "express", "delve into", "explore",
|
| 42 |
+
"enlighten", "present", "review", "report", "state", "point out", "inform", "highlight","Brief"
|
| 43 |
]
|
| 44 |
|
| 45 |
def is_explanation_query(query):
|
|
|
|
| 48 |
def retrieve_relevant_chunks(query, index, chunks, top_k=5):
|
| 49 |
sub_str = "article"
|
| 50 |
numbers = re.findall(r'\d+', query)
|
| 51 |
+
var = 1
|
| 52 |
if sub_str in query.lower() and numbers:
|
| 53 |
article_number = str(numbers[0])
|
| 54 |
for i, chunk in enumerate(chunks):
|
| 55 |
if chunk.lower().startswith(f"article;{article_number}"):
|
| 56 |
flag = is_explanation_query(query)
|
| 57 |
+
if flag == False:
|
| 58 |
+
var = 2
|
| 59 |
+
return [chunk], var
|
| 60 |
+
|
| 61 |
query_embedding = embedding_model.encode([query])
|
| 62 |
query_embedding = np.array(query_embedding).astype("float32")
|
| 63 |
distances, indices = index.search(query_embedding, top_k)
|
| 64 |
relevant_chunks = [chunks[i] for i in indices[0]]
|
| 65 |
+
var = 3
|
| 66 |
+
return relevant_chunks,var
|
| 67 |
|
| 68 |
# Prompt to refine the query
|
| 69 |
refine_prompt_template = ChatPromptTemplate.from_messages([
|
|
|
|
| 109 |
|
| 110 |
answer_chain_article = LLMChain(llm=a_llm, prompt=answer_prompt_template_query, output_parser=parser)
|
| 111 |
|
| 112 |
+
|
| 113 |
+
explain_article_prompt_template = ChatPromptTemplate.from_messages([
|
| 114 |
+
("system",
|
| 115 |
+
"You are a helpful assistant that analyzes human-written legal or constitutional text. "
|
| 116 |
+
"Your task is to return a structured response with the following fields:\n"
|
| 117 |
+
"- title: The title of the article, if available or derivable.\n"
|
| 118 |
+
"- answer: A clear explanation or summary of the content.\n"
|
| 119 |
+
"- is_relevant: true if the content is relevant to the legal or constitutional domain, otherwise false.\n"
|
| 120 |
+
"- article_number: Extract the article number (e.g., Article 11 or Article 3(a)), or return 'None' if not found."
|
| 121 |
+
),
|
| 122 |
+
("human",
|
| 123 |
+
"query:\n{query}\n\n"
|
| 124 |
+
"Context:\n{context}\n\n"
|
| 125 |
+
"Return your response in the following format:\n\n"
|
| 126 |
+
"title:\n"
|
| 127 |
+
"answer:\n"
|
| 128 |
+
"is_relevant:\n"
|
| 129 |
+
"article_number\n\n"
|
| 130 |
+
"{format_instructions}")
|
| 131 |
+
])
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
explain_chain_article = LLMChain(llm=a_llm,prompt=explain_article_prompt_template,output_parser=parser)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
# Prompt for explanation-style answers
|
| 139 |
+
from langchain.prompts import ChatPromptTemplate
|
| 140 |
+
|
| 141 |
+
from langchain.prompts import ChatPromptTemplate
|
| 142 |
+
|
| 143 |
+
explanation_prompt_template = ChatPromptTemplate.from_messages([
|
| 144 |
("system",
|
| 145 |
+
"You are a legal expert assistant with deep knowledge of the Pakistan Penal Code, 1860 (PPC). "
|
| 146 |
+
"You will receive a user query and a set of context chunks from the law. "
|
| 147 |
+
"Your task is to determine if the query is answerable strictly based on the provided context. "
|
| 148 |
"If it is, provide a structured explanation based on that context—without copying or repeating the context text verbatim. "
|
| 149 |
+
"If the information needed to answer is not found in the provided chunks, respond with a structured message indicating Is Relevant: False, and do not fabricate any information."
|
| 150 |
),
|
| 151 |
|
| 152 |
("human",
|
|
|
|
| 155 |
"Instructions:\n"
|
| 156 |
"1. Use only the information in the context to determine if the query can be answered.\n"
|
| 157 |
"2. DO NOT include or repeat the context text directly in your answer. Summarize or paraphrase when needed.\n"
|
| 158 |
+
"3. If the query is answerable based on the context, explain the related section or clause clearly and precisely:\n"
|
| 159 |
+
" - Include the Section number if available.\n"
|
| 160 |
+
" - Describe its meaning and how it functions within the PPC.\n"
|
| 161 |
"4. Do NOT use real-world references, court cases, or examples.\n"
|
| 162 |
+
"5. Your final output must include the following structured return:\n"
|
| 163 |
+
" - A *detailed explanation* of the relevant section or provision.\n"
|
| 164 |
+
" - Is Relevant: True/False\n"
|
| 165 |
+
" - Related Section(s): List section number(s) if any.\n\n"
|
| 166 |
"{format_instructions}\n")
|
| 167 |
])
|
| 168 |
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
answer_chain_explanation = LLMChain(llm=a_llm, prompt=explanation_prompt_template, output_parser=parser)
|
| 173 |
|
| 174 |
# Load data
|
| 175 |
embeddings, index, chunks = load_embeddings_and_index(save_dir)
|
|
|
|
| 184 |
|
| 185 |
print("\nRefined Query:", refined_query)
|
| 186 |
|
| 187 |
+
relevant_chunks, var = retrieve_relevant_chunks(refined_query, index, chunks, top_k=5)
|
| 188 |
|
| 189 |
print("\nTop Relevant Chunks:")
|
| 190 |
for i, chunk in enumerate(relevant_chunks, 1):
|
|
|
|
| 192 |
|
| 193 |
context = "\n\n".join(relevant_chunks)
|
| 194 |
|
| 195 |
+
if var==1:
|
| 196 |
print('okokokokokokokokokokok')
|
| 197 |
response = answer_chain_article.run(query=refined_query,context=context,format_instructions=parser.get_format_instructions())
|
| 198 |
+
elif var==2:
|
| 199 |
+
print('newnewnewnewnew')
|
| 200 |
+
response = explain_chain_article.run(query=refined_query,context=context,format_instructions=parser.get_format_instructions())
|
| 201 |
else:
|
| 202 |
print('nononononononononono')
|
| 203 |
response = answer_chain_explanation.run(query=refined_query,context=context,format_instructions=parser.get_format_instructions())
|
|
|
|
| 206 |
"title":response.title,
|
| 207 |
"answer": response.answer,
|
| 208 |
"is_relevant": response.is_relevant,
|
| 209 |
+
"article_number": response.article_number,
|
| 210 |
}
|