spam_classifier / app.py
Saim-11's picture
Update app.py
013c513 verified
import gradio as gr
import pickle
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder
from xgboost import XGBClassifier
# Load the model, label encoder, and vectorizer
with open('xgb_model.pkl', 'rb') as model_file:
model = pickle.load(model_file)
with open('label_encoder.pkl', 'rb') as encoder_file:
label_encoder = pickle.load(encoder_file)
with open('vectorizer.pkl', 'rb') as vectorizer_file:
vectorizer = pickle.load(vectorizer_file)
# Define the prediction function
def predict(text):
try:
text_vector = vectorizer.transform([text])
prediction = model.predict(text_vector)
label = label_encoder.inverse_transform(prediction)[0]
return {"prediction": label}
except Exception as e:
return {"error": str(e)}
# Create the Gradio interface
interface = gr.Interface(
fn=predict,
inputs=gr.Textbox(lines=2, placeholder="Enter a message..."),
outputs="json",
title="Spam Detector",
description="Enter a message to determine if it is Phishing or Legitimate."
)
# Launch the Gradio app
interface.launch(share=True)