Spaces:
Sleeping
Sleeping
File size: 35,962 Bytes
b9d00b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
import random
import re
import logging
from datetime import datetime
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('boundary_assistant.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class SimplifiedBoundaryAssistant:
def __init__(self):
# Initialize only the essential models
self.models = {}
self.tokenizers = {}
# Model paths - keeping the 4 essential ones
self.model_paths = {
'boundary': 'SamanthaStorm/healthy-boundary-predictor', # Your trained model
'toxicity': 'unitary/toxic-bert', # Toxicity detection
'emotion': 'j-hartmann/emotion-english-distilroberta-base', # Emotion detection
'fallacy': 'SamanthaStorm/fallacyfinder' # Fallacy detection
}
# Load all models
self.load_models()
# Emotion labels for the emotion model
self.emotion_labels = ['anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise']
# Emotion to need mapping
self.emotion_to_needs = {
'anger': ['respect', 'fairness', 'to be heard'],
'sadness': ['comfort', 'understanding', 'connection'],
'fear': ['safety', 'security', 'reassurance'],
'disgust': ['boundaries', 'respect', 'different approach'],
'neutral': ['clarity', 'understanding', 'communication'],
'joy': ['connection', 'sharing', 'celebration'],
'surprise': ['information', 'clarity', 'time to process']
}
# Fallacy labels (from your fallacy finder)
self.fallacy_labels = {
'ad_hominem': 'Ad Hominem (Personal Attack)',
'strawman': 'Strawman (Misrepresenting Argument)',
'whataboutism': 'Whataboutism (Deflecting)',
'gaslighting': 'Gaslighting (Questioning Reality)',
'false_dichotomy': 'False Dichotomy (Only Two Options)',
'appeal_to_emotion': 'Appeal to Emotion',
'darvo': 'DARVO (Deny, Attack, Reverse)',
'moving_goalposts': 'Moving Goalposts',
'cherry_picking': 'Cherry Picking',
'appeal_to_authority': 'Appeal to Authority',
'slippery_slope': 'Slippery Slope',
'motte_and_bailey': 'Motte and Bailey',
'gish_gallop': 'Gish Gallop',
'kafkatrapping': 'Kafkatrapping',
'sealioning': 'Sealioning',
'no_fallacy': 'No Fallacy'
}
def load_models(self):
"""Load the essential models"""
logger.info("Starting model loading process...")
for name, path in self.model_paths.items():
try:
logger.info(f"Loading {name} model: {path}")
if name == 'fallacy':
# Special handling for fallacy model with 16 labels
self.tokenizers[name] = AutoTokenizer.from_pretrained(path)
self.models[name] = AutoModelForSequenceClassification.from_pretrained(path, num_labels=16)
else:
self.tokenizers[name] = AutoTokenizer.from_pretrained(path)
self.models[name] = AutoModelForSequenceClassification.from_pretrained(path)
logger.info(f"β
{name} model loaded successfully!")
except Exception as e:
logger.error(f"β Error loading {name} model: {e}")
self.models[name] = None
self.tokenizers[name] = None
def predict_with_model(self, text, model_name):
"""Make prediction with specified model"""
if self.models[model_name] is None or self.tokenizers[model_name] is None:
logger.warning(f"{model_name} model not available")
return None, 0.0
try:
inputs = self.tokenizers[model_name](
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=512
)
with torch.no_grad():
outputs = self.models[model_name](**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class_id = predictions.argmax().item()
confidence = predictions.max().item()
logger.debug(f"{model_name} prediction: class {predicted_class_id}, confidence {confidence:.3f}")
return predicted_class_id, confidence
except Exception as e:
logger.error(f"Error with {model_name} prediction: {e}")
return None, 0.0
def analyze_simplified(self, text):
"""Analysis using 4 essential models"""
if not text.strip():
return None
logger.info(f"ANALYZING MESSAGE: '{text[:100]}{'...' if len(text) > 100 else ''}'")
analysis = {
'text': text,
'issues': [],
'underlying_needs': {
'emotions': [],
'core_needs': [],
'likely_feelings': []
},
'severity_score': 0,
'is_toxic': False,
'is_healthy_boundary': True,
'fallacies_detected': []
}
# 1. Emotion Detection (for understanding underlying needs)
logger.info("Running emotion detection...")
emotion_pred, emotion_conf = self.predict_with_model(text, 'emotion')
if emotion_pred is not None and emotion_conf > 0.3:
detected_emotion = self.emotion_labels[emotion_pred] if emotion_pred < len(self.emotion_labels) else 'neutral'
logger.info(f"EMOTION DETECTED: {detected_emotion} (confidence: {emotion_conf:.3f})")
analysis['underlying_needs']['emotions'].append({
'emotion': detected_emotion,
'confidence': emotion_conf
})
analysis['underlying_needs']['core_needs'].extend(self.emotion_to_needs.get(detected_emotion, ['understanding']))
analysis['underlying_needs']['likely_feelings'].append(detected_emotion)
else:
logger.info(f"No strong emotion detected (pred: {emotion_pred}, conf: {emotion_conf})")
# 2. Toxicity Detection
logger.info("Running toxicity detection...")
toxicity_pred, toxicity_conf = self.predict_with_model(text, 'toxicity')
if toxicity_pred is not None and toxicity_pred == 1 and toxicity_conf > 0.7: # 1 = TOXIC
logger.info(f"TOXICITY DETECTED: confidence {toxicity_conf:.3f}")
analysis['is_toxic'] = True
analysis['issues'].append({
'type': 'toxic_language',
'name': 'Toxic Language Detected',
'confidence': toxicity_conf,
'severity': 3 if toxicity_conf > 0.9 else 2
})
analysis['severity_score'] += 3 if toxicity_conf > 0.9 else 2
else:
logger.info(f"No toxicity detected (pred: {toxicity_pred}, conf: {toxicity_conf})")
# 3. Boundary Health Check (1=healthy, 0=unhealthy)
logger.info("Running boundary health check...")
boundary_pred, boundary_conf = self.predict_with_model(text, 'boundary')
if boundary_pred is not None:
if boundary_pred == 0 and boundary_conf > 0.7: # 0 = unhealthy
logger.info(f"UNHEALTHY BOUNDARY DETECTED: confidence {boundary_conf:.3f}")
analysis['is_healthy_boundary'] = False
analysis['issues'].append({
'type': 'unhealthy_boundary',
'name': 'Unhealthy Boundary Pattern',
'confidence': boundary_conf,
'severity': 2 if boundary_conf > 0.8 else 1
})
analysis['severity_score'] += 2 if boundary_conf > 0.8 else 1
elif boundary_pred == 1: # 1 = healthy
logger.info(f"HEALTHY BOUNDARY DETECTED: confidence {boundary_conf:.3f}")
analysis['is_healthy_boundary'] = True
else:
logger.info(f"Boundary health check failed")
# 4. Fallacy Detection
logger.info("Running fallacy detection...")
fallacy_pred, fallacy_conf = self.predict_with_model(text, 'fallacy')
if fallacy_pred is not None and fallacy_conf > 0.6: # Higher threshold for fallacies
fallacy_keys = list(self.fallacy_labels.keys())
if fallacy_pred < len(fallacy_keys):
fallacy_type = fallacy_keys[fallacy_pred]
logger.info(f"FALLACY DETECTED: {fallacy_type} (confidence: {fallacy_conf:.3f})")
if fallacy_type != 'no_fallacy':
analysis['fallacies_detected'].append(fallacy_type)
analysis['issues'].append({
'type': 'fallacy',
'subtype': fallacy_type,
'name': self.fallacy_labels[fallacy_type],
'confidence': fallacy_conf,
'severity': 3 if fallacy_type == 'gaslighting' else 2
})
analysis['severity_score'] += 3 if fallacy_type == 'gaslighting' else 2
else:
logger.info(f"Fallacy model detected 'no_fallacy' - healthy communication")
else:
logger.info(f"No fallacy detected (pred: {fallacy_pred}, conf: {fallacy_conf})")
logger.info(f"ANALYSIS COMPLETE - Severity score: {analysis['severity_score']}, Issues found: {len(analysis['issues'])}")
logger.info("=" * 80)
return analysis
def generate_smart_boundary(self, analysis):
"""Generate boundary based on simplified analysis with emotion awareness"""
if not analysis:
return "I need to express my feelings about this situation. I'd like us to find a way to communicate that works for both of us."
original_text = analysis['text'].lower()
# Extract context and emotions
relationship_context = self.infer_relationship_context(original_text)
situation_context = self.extract_situation_context(original_text)
# Use detected emotions for more empathetic boundaries
detected_emotions = analysis['underlying_needs']['emotions']
if detected_emotions:
primary_emotion = detected_emotions[0]['emotion'] # Highest confidence emotion
emotion_context = primary_emotion
else:
emotion_context = self.extract_emotional_context(original_text)
# Handle different scenarios based on analysis
if analysis['is_toxic']:
return self.generate_non_toxic_boundary(emotion_context, situation_context, analysis['underlying_needs']['core_needs'])
elif analysis['fallacies_detected']:
# Handle fallacy-based responses
primary_fallacy = analysis['fallacies_detected'][0]
return self.generate_fallacy_response(primary_fallacy, situation_context, emotion_context)
elif not analysis['is_healthy_boundary']:
return self.generate_healthier_boundary(original_text, situation_context, emotion_context)
elif analysis['issues']:
# Has some issues but not major ones
return self.generate_improved_boundary(situation_context, emotion_context)
else:
# No major issues detected, just polish it up
return self.generate_polished_boundary(original_text, situation_context, emotion_context)
def generate_non_toxic_boundary(self, emotion, situation, core_needs):
"""Generate boundary that removes toxic language"""
needs_text = core_needs[0] if core_needs else 'understanding'
if emotion == 'anger':
return f"I'm feeling really frustrated about {situation}. I need {needs_text} and a chance to discuss this calmly when we can both listen to each other."
elif emotion == 'sadness':
return f"I'm feeling hurt about {situation}. I need {needs_text} and for us to find a way to talk about this that doesn't leave either of us feeling attacked."
elif emotion == 'fear':
return f"I'm feeling defensive about {situation}. I need {needs_text} and reassurance that we can work through this together respectfully."
else:
return f"I'm feeling overwhelmed about {situation}. I need {needs_text} and for us to approach this conversation with more care for each other's feelings."
def generate_healthier_boundary(self, original_text, situation, emotion):
"""Generate healthier version of boundary"""
# Look for specific unhealthy patterns in original text
if any(word in original_text for word in ['always', 'never']):
return f"I feel {emotion} when {situation} happens. I need us to find a specific solution for this particular issue."
elif 'you need to' in original_text or 'you should' in original_text:
return f"I feel {emotion} about {situation}. I'd appreciate it if we could work together on this."
else:
return f"I want to express how I feel about {situation}. I feel {emotion} and I need us to find a way to handle this that works for both of us."
def generate_fallacy_response(self, fallacy_type, situation, emotion):
"""Generate response based on specific fallacy detected"""
if 'ad_hominem' in fallacy_type:
return f"I feel {emotion} when {situation} becomes personal. I need us to focus on the actual issues rather than attacking each other's character."
elif 'gaslighting' in fallacy_type:
return f"I feel {emotion} when my experiences about {situation} are questioned. I need my perspective to be acknowledged, even if we disagree."
elif 'strawman' in fallacy_type:
return f"I feel {emotion} when {situation} gets misrepresented. I need us to address what I'm actually saying."
elif 'whataboutism' in fallacy_type:
return f"I feel {emotion} when {situation} gets deflected to other issues. I need us to address this specific concern first."
else:
return f"I notice I feel {emotion} about {situation}. I need us to discuss this more constructively."
def generate_improved_boundary(self, situation, emotion):
"""Generate improved boundary for minor issues"""
return f"I'm feeling {emotion} about {situation}. I'd like us to step back and approach this differently so we can understand each other better."
def generate_polished_boundary(self, original_text, situation, emotion):
"""Polish up already decent boundaries"""
return f"I want to communicate about {situation}. I'm feeling {emotion} and would appreciate if we could work together to find a solution that feels good for both of us."
def infer_relationship_context(self, text):
"""Infer relationship type from original text"""
if any(word in text for word in ['love', 'babe', 'honey', 'relationship', 'partner']):
return 'romantic'
elif any(word in text for word in ['work', 'meeting', 'boss', 'office', 'colleague']):
return 'professional'
elif any(word in text for word in ['mom', 'dad', 'family', 'parent', 'sibling']):
return 'family'
else:
return 'general'
def extract_situation_context(self, text):
"""Extract specific situation being discussed"""
if 'interrupt' in text:
return 'interrupting during conversations'
elif any(word in text for word in ['late', 'time', 'punctual']):
return 'time and punctuality issues'
elif 'listen' in text or 'hear' in text:
return 'feeling unheard in our communication'
elif any(word in text for word in ['talk', 'conversation', 'discuss']):
return 'our communication patterns'
elif 'respect' in text:
return 'mutual respect in our interactions'
else:
return 'this situation'
def extract_emotional_context(self, text):
"""Extract emotional undertones from original text"""
if any(word in text for word in ['hurt', 'pain', 'upset']):
return 'hurt'
elif any(word in text for word in ['angry', 'mad', 'furious', 'annoying']):
return 'frustrated'
elif any(word in text for word in ['ignore', 'dismissed', 'unheard']):
return 'unheard'
elif any(word in text for word in ['disrespect', 'rude']):
return 'disrespected'
elif any(word in text for word in ['anxious', 'worried', 'stressed']):
return 'anxious'
else:
return 'uncomfortable'
"""Infer relationship type from original text"""
if any(word in text for word in ['love', 'babe', 'honey', 'relationship', 'partner']):
return 'romantic'
elif any(word in text for word in ['work', 'meeting', 'boss', 'office', 'colleague']):
return 'professional'
elif any(word in text for word in ['mom', 'dad', 'family', 'parent', 'sibling']):
return 'family'
else:
return 'general'
def extract_situation_context(self, text):
"""Extract specific situation being discussed"""
if 'interrupt' in text:
return 'interrupting during conversations'
elif any(word in text for word in ['late', 'time', 'punctual']):
return 'time and punctuality issues'
elif 'listen' in text or 'hear' in text:
return 'feeling unheard in our communication'
elif any(word in text for word in ['talk', 'conversation', 'discuss']):
return 'our communication patterns'
elif 'respect' in text:
return 'mutual respect in our interactions'
else:
return 'this situation'
def extract_emotional_context(self, text):
"""Extract emotional undertones from original text"""
if any(word in text for word in ['hurt', 'pain', 'upset']):
return 'hurt'
elif any(word in text for word in ['angry', 'mad', 'furious', 'annoying']):
return 'frustrated'
elif any(word in text for word in ['ignore', 'dismissed', 'unheard']):
return 'unheard'
elif any(word in text for word in ['disrespect', 'rude']):
return 'disrespected'
elif any(word in text for word in ['anxious', 'worried', 'stressed']):
return 'anxious'
else:
return 'uncomfortable'
def calculate_overall_score(self, analysis):
"""Calculate overall boundary health score"""
if not analysis:
return 85 # Good baseline if no analysis
base_score = 100
# Major penalties for severe issues
if analysis['is_toxic']:
base_score -= 40 # Major penalty for toxic language
if not analysis['is_healthy_boundary']:
base_score -= 25 # Significant penalty for unhealthy boundaries
# Additional penalties based on severity
severity_penalty = analysis['severity_score'] * 8
final_score = max(0, base_score - severity_penalty)
return final_score
def format_analysis_feedback(self, analysis):
"""Format the analysis into user-friendly feedback"""
if not analysis:
return "π‘ **Unable to analyze:** Please try entering your message again.\n"
if not analysis['issues']:
return "β
**Great communication!** No major issues detected. Your boundary setting approach looks healthy.\n"
feedback = ""
# Address major issues
if analysis['is_toxic']:
feedback += "β οΈ **Toxic Language Detected**\n\n"
feedback += "β’ This communication contains language that may be harmful or aggressive\n"
feedback += "β’ Consider focusing on specific behaviors rather than personal attacks\n"
feedback += "β’ Using 'I' statements can help express feelings without blame\n\n"
if not analysis['is_healthy_boundary']:
feedback += "π **Boundary Improvement Needed**\n\n"
feedback += "β’ This boundary-setting approach may not be as effective\n"
feedback += "β’ Consider focusing on your needs rather than what others should do\n"
feedback += "β’ Express feelings without making demands or ultimatums\n\n"
# Show fallacy detection
if analysis['fallacies_detected']:
feedback += "π§ **Logical Issues Detected**\n\n"
for fallacy in analysis['fallacies_detected']:
fallacy_name = self.fallacy_labels.get(fallacy, fallacy)
feedback += f"β’ **{fallacy_name}** detected\n"
feedback += "β’ These patterns can make communication less effective\n"
feedback += "β’ Focus on specific behaviors rather than general arguments\n\n"
# Show emotional understanding
if analysis['underlying_needs']['emotions']:
feedback += "π **What You Might Be Feeling**\n\n"
emotions = analysis['underlying_needs']['emotions']
for emotion_data in emotions:
emotion = emotion_data['emotion']
confidence = emotion_data['confidence']
feedback += f"β’ **{emotion.title()}** ({confidence*100:.0f}% confidence)\n"
core_needs = list(set(analysis['underlying_needs']['core_needs'])) # Remove duplicates
if core_needs:
feedback += f"\n**You may need:** {', '.join(core_needs[:3])}\n\n"
return feedback
def process_boundary_request(self, raw_input):
"""Main function using simplified AI analysis"""
if not raw_input.strip():
return "Please enter your raw thoughts to get started.", "", ""
# Simplified analysis using 3 models
analysis = self.analyze_simplified(raw_input)
# Format analysis feedback
analysis_text = self.format_analysis_feedback(analysis)
# Generate improved boundary
improved = self.generate_smart_boundary(analysis)
# Calculate score for explanation
score = self.calculate_overall_score(analysis)
# Generate explanation
explanation = f"""
**Why this works better:**
β
Uses "I" statements to express feelings
β
Removes harmful communication patterns
β
Focuses on needs rather than blame
β
Creates opportunity for collaborative solution
**Original Message Health Score: {score}/100**
**Not quite right?** Use the "Custom Boundary Builder" below to create a more personalized boundary.
"""
return analysis_text, improved, explanation
def validate_boundary_smart(self, boundary_text):
"""Smart validation using simplified models"""
if not boundary_text.strip():
return "Please enter a boundary to check.", 0, []
# Run simplified analysis on the boundary
analysis = self.analyze_simplified(boundary_text)
score = self.calculate_overall_score(analysis)
# Determine rating
if analysis and analysis['is_toxic']:
rating = "π΄ HARMFUL - Contains Toxic Language"
elif score >= 80:
rating = "π’ Excellent Boundary!"
elif score >= 60:
rating = "π΅ Good Boundary"
elif score >= 40:
rating = "π‘ Fair Boundary"
else:
rating = "π΄ Needs Improvement"
# Format feedback
feedback = f"**{rating}** (Score: {score}/100)\n\n"
if analysis and analysis['issues']:
feedback += self.format_analysis_feedback(analysis)
else:
feedback += "β
**Great boundary!** No significant issues detected.\n"
feedback += "β’ Uses respectful communication patterns\n"
feedback += "β’ Shows healthy boundary-setting approach\n"
feedback += "β’ Free of toxic language patterns\n"
return feedback, score, analysis.get('issues', []) if analysis else []
# Custom boundary generation methods (keeping the same)
def generate_custom_boundary(self, behavior, relationship, feeling, need, setting, tone):
"""Generate a custom boundary based on guided questions"""
# Relationship-specific language
relationship_language = {
'romantic_partner': {
'address': 'babe/honey',
'approach': 'collaborative',
'example': 'I love you and want us to work through this together'
},
'friend': {
'address': 'friend',
'approach': 'direct but caring',
'example': 'I value our friendship and want to talk about something'
},
'family_member': {
'address': 'family',
'approach': 'respectful but firm',
'example': 'I respect you and need to share something important'
},
'coworker': {
'address': 'colleague',
'approach': 'professional',
'example': 'I wanted to discuss our working relationship'
},
'boss': {
'address': 'professional',
'approach': 'formal but assertive',
'example': 'I\'d like to discuss some workplace concerns'
},
'child': {
'address': 'child',
'approach': 'teaching moment',
'example': 'Let\'s talk about how we treat each other'
}
}
# Setting-specific approaches
setting_approaches = {
'private_conversation': 'when we\'re alone',
'public_space': 'respectfully in public',
'work_environment': 'in a professional setting',
'family_gathering': 'during family time',
'text_message': 'via text',
'email': 'in writing'
}
# Tone variations
tone_styles = {
'gentle': 'I gently need to share',
'firm': 'I need to be clear about',
'direct': 'I want to directly address',
'diplomatic': 'I\'d like to diplomatically discuss'
}
rel_info = relationship_language.get(relationship, relationship_language['friend'])
setting_phrase = setting_approaches.get(setting, 'in our interactions')
tone_phrase = tone_styles.get(tone, 'I need to share')
# Generate boundary with customization
templates = [
f"{tone_phrase} that I feel {feeling} when {behavior}. I need {need} for our relationship to work well.",
f"I want to talk about how I feel {feeling} when {behavior}. Moving forward, I need {need}.",
f"I've noticed I feel {feeling} when {behavior} happens. Could we work together so I can have {need}?",
f"I need to share that {behavior} makes me feel {feeling}. I'm hoping we can find a way for me to have {need}."
]
boundary = random.choice(templates)
# Add relationship-specific context
context = f"\n\n**Tailored for {relationship.replace('_', ' ')}:**\n"
context += f"β’ Consider saying this {setting_phrase}\n"
context += f"β’ Remember: {rel_info['example']}\n"
context += f"β’ Approach: {rel_info['approach']}"
return boundary + context
# Initialize the simplified assistant
assistant = SimplifiedBoundaryAssistant()
# Gradio interface functions
def analyze_and_improve(raw_input):
return assistant.process_boundary_request(raw_input)
def check_boundary_smart(boundary_text):
feedback, score, issues = assistant.validate_boundary_smart(boundary_text)
return feedback
def build_custom_boundary(behavior, relationship, feeling, need, setting, tone):
if not all([behavior, relationship, feeling, need]):
return "Please fill in all required fields to generate your custom boundary."
custom_boundary = assistant.generate_custom_boundary(behavior, relationship, feeling, need, setting, tone)
return custom_boundary
def show_custom_builder():
return gr.update(visible=True)
def hide_custom_builder():
return gr.update(visible=False)
# Create the Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="purple"),
title="Smart Boundary Writing Assistant",
css="""
.gradio-container {
max-width: 1200px !important;
}
"""
) as demo:
gr.Markdown(
"""
# π‘οΈ Smart Boundary Writing Assistant
**Powered by 3 essential AI models:** Toxicity Detection, Your Custom Boundary Predictor, and Emotion Recognition.
Transform your raw thoughts into healthy, effective boundaries with AI-powered insights.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## π Step 1: Enter Your Raw Thoughts")
raw_input = gr.Textbox(
label="What boundary do you need to set?",
placeholder="e.g., 'You always interrupt me and never listen to what I'm saying'",
lines=4,
info="Don't worry about being perfect - our AI will analyze and improve it!"
)
analyze_btn = gr.Button("π Analyze with AI Models", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("## β
Step 2: AI-Generated Boundary")
analysis_output = gr.Textbox(
label="AI Analysis",
lines=6,
interactive=False
)
improved_output = gr.Textbox(
label="Your AI-Improved Boundary",
lines=3,
interactive=False
)
explanation_output = gr.Textbox(
label="Why This Works Better",
lines=4,
interactive=False
)
# "Not quite right?" button
with gr.Row():
customize_btn = gr.Button("π― Not quite right? Create a custom boundary", variant="secondary", size="sm")
gr.Markdown("---")
# Hidden Custom Boundary Builder Section (initially hidden)
with gr.Column(visible=False) as custom_builder:
gr.Markdown("## π― Custom Boundary Builder")
gr.Markdown("*Let's create a personalized boundary that feels right for your specific situation.*")
with gr.Row():
with gr.Column():
behavior_input = gr.Textbox(
label="What specific behavior do you want them to stop/change?",
placeholder="e.g., 'interrupting me during meetings', 'showing up late', 'criticizing my appearance'",
lines=2
)
relationship_input = gr.Dropdown(
label="What's your relationship to this person?",
choices=[
("Romantic partner", "romantic_partner"),
("Friend", "friend"),
("Family member", "family_member"),
("Coworker", "coworker"),
("Boss/Manager", "boss"),
("Child", "child")
],
value="friend"
)
feeling_input = gr.Dropdown(
label="How does this behavior make you feel?",
choices=[
"frustrated", "hurt", "disrespected", "unheard",
"uncomfortable", "anxious", "angry", "disappointed",
"undervalued", "stressed"
],
value="frustrated"
)
with gr.Column():
need_input = gr.Textbox(
label="What do you need instead?",
placeholder="e.g., 'to be heard completely', 'punctuality and respect for my time', 'supportive communication'",
lines=2
)
setting_input = gr.Dropdown(
label="Where/how will you communicate this?",
choices=[
("Private conversation", "private_conversation"),
("Text message", "text_message"),
("Email", "email"),
("Work environment", "work_environment"),
("Family gathering", "family_gathering"),
("Public space", "public_space")
],
value="private_conversation"
)
tone_input = gr.Dropdown(
label="What tone feels right for you?",
choices=[
("Gentle", "gentle"),
("Firm", "firm"),
("Direct", "direct"),
("Diplomatic", "diplomatic")
],
value="firm"
)
build_btn = gr.Button("π§ Build My Custom Boundary", variant="primary", size="lg")
custom_output = gr.Textbox(
label="Your Custom Boundary",
lines=8,
interactive=False
)
with gr.Row():
back_btn = gr.Button("β Back to main tool", variant="secondary", size="sm")
gr.Markdown("---")
# Model status
gr.Markdown(
"""
## π€ AI Models Used
This assistant uses **4 essential AI models** for comprehensive analysis:
- **π Fallacy Detector** - Identifies logical fallacies and reasoning errors
- **π‘οΈ Your Boundary Predictor** - Assesses boundary communication health
- **β οΈ Toxicity Detector** - Identifies harmful/toxic language patterns
- **π Emotion Recognition** - Recognizes underlying feelings and needs
**Result:** Focused analysis that identifies problems AND understands your emotional needs!
"""
)
# Connect the functions
analyze_btn.click(
fn=analyze_and_improve,
inputs=[raw_input],
outputs=[analysis_output, improved_output, explanation_output]
)
# Custom builder show/hide functionality
customize_btn.click(
fn=show_custom_builder,
outputs=[custom_builder]
)
back_btn.click(
fn=hide_custom_builder,
outputs=[custom_builder]
)
build_btn.click(
fn=build_custom_boundary,
inputs=[behavior_input, relationship_input, feeling_input, need_input, setting_input, tone_input],
outputs=[custom_output]
)
# Launch the app
if __name__ == "__main__":
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860
) |