Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Step 1: Search for best.pt in the training directory
|
7 |
+
base_path = "yolov5/runs/train/"
|
8 |
+
best_path = None
|
9 |
+
|
10 |
+
# Search through the directory structure to find best.pt
|
11 |
+
for root, dirs, files in os.walk(base_path):
|
12 |
+
if "best.pt" in files:
|
13 |
+
best_path = os.path.join(root, "best.pt")
|
14 |
+
break
|
15 |
+
|
16 |
+
# Step 2: If best.pt is not found, use pre-trained weights
|
17 |
+
if best_path is None:
|
18 |
+
print("Trained weights (best.pt) not found.")
|
19 |
+
print("Using pre-trained YOLOv5 weights (yolov5s.pt) instead.")
|
20 |
+
|
21 |
+
# Fallback to a pre-trained model if best.pt is not available
|
22 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # Load pre-trained weights
|
23 |
+
|
24 |
+
else:
|
25 |
+
print(f"Model weights found at: {best_path}")
|
26 |
+
# Load YOLOv5 model with the correct path
|
27 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path=best_path)
|
28 |
+
|
29 |
+
# Step 3: Detection Function
|
30 |
+
def detect_weapons(image):
|
31 |
+
results = model(image)
|
32 |
+
detected_classes = results.pandas().xyxy[0]['name'].unique()
|
33 |
+
|
34 |
+
# Check for threats
|
35 |
+
threat_message = "Threat detected: Be careful" if len(detected_classes) > 0 else "No threat detected"
|
36 |
+
return threat_message, Image.fromarray(results.render()[0])
|
37 |
+
|
38 |
+
# Step 4: Gradio Interface
|
39 |
+
def inference(image):
|
40 |
+
threat, detected_image = detect_weapons(image)
|
41 |
+
return threat, detected_image
|
42 |
+
|
43 |
+
iface = gr.Interface(
|
44 |
+
fn=inference,
|
45 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
46 |
+
outputs=[
|
47 |
+
gr.Textbox(label="Threat Detection"),
|
48 |
+
gr.Image(label="Detected Image"),
|
49 |
+
],
|
50 |
+
title="Weapon Detection AI",
|
51 |
+
description="Upload an image to detect weapons like bombs, guns, and pistols."
|
52 |
+
)
|
53 |
+
|
54 |
+
# Step 5: Launch Gradio App
|
55 |
+
iface.launch()
|