Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,81 @@
|
|
1 |
import os
|
2 |
import torch
|
|
|
|
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
|
6 |
-
#
|
7 |
base_path = "yolov5/runs/train/"
|
8 |
best_path = None
|
9 |
-
|
10 |
-
# Search through the directory structure to find best.pt
|
11 |
for root, dirs, files in os.walk(base_path):
|
12 |
if "best.pt" in files:
|
13 |
best_path = os.path.join(root, "best.pt")
|
14 |
break
|
15 |
|
16 |
-
# Step 2: If best.pt is not found, use pre-trained weights
|
17 |
if best_path is None:
|
18 |
-
print("Trained weights (best.pt) not found.")
|
19 |
-
|
20 |
-
|
21 |
-
# Fallback to a pre-trained model if best.pt is not available
|
22 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # Load pre-trained weights
|
23 |
-
|
24 |
else:
|
25 |
print(f"Model weights found at: {best_path}")
|
26 |
-
# Load YOLOv5 model with the correct path
|
27 |
model = torch.hub.load('ultralytics/yolov5', 'custom', path=best_path)
|
28 |
|
29 |
-
#
|
|
|
|
|
|
|
30 |
def detect_weapons(image):
|
31 |
results = model(image)
|
32 |
-
detected_classes = results.pandas().xyxy[0]['name']
|
33 |
-
|
34 |
-
|
35 |
-
threat_message = "Threat detected: Be careful" if len(detected_classes) > 0 else "No threat detected"
|
36 |
return threat_message, Image.fromarray(results.render()[0])
|
37 |
|
38 |
-
#
|
39 |
-
def
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
|
|
43 |
iface = gr.Interface(
|
44 |
-
fn=
|
45 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
46 |
-
outputs=[
|
47 |
-
gr.Textbox(label="Threat Detection"),
|
48 |
-
gr.Image(label="Detected Image")
|
49 |
],
|
50 |
title="Weapon Detection AI",
|
51 |
-
description="Upload an image to detect weapons like bombs, guns, and pistols."
|
52 |
)
|
53 |
|
54 |
-
#
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
import gradio as gr
|
6 |
from PIL import Image
|
7 |
|
8 |
+
# Load YOLOv5 model
|
9 |
base_path = "yolov5/runs/train/"
|
10 |
best_path = None
|
|
|
|
|
11 |
for root, dirs, files in os.walk(base_path):
|
12 |
if "best.pt" in files:
|
13 |
best_path = os.path.join(root, "best.pt")
|
14 |
break
|
15 |
|
|
|
16 |
if best_path is None:
|
17 |
+
print("Trained weights (best.pt) not found. Using pre-trained weights.")
|
18 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
|
|
|
|
|
|
|
|
|
19 |
else:
|
20 |
print(f"Model weights found at: {best_path}")
|
|
|
21 |
model = torch.hub.load('ultralytics/yolov5', 'custom', path=best_path)
|
22 |
|
23 |
+
# Define weapon-related classes
|
24 |
+
WEAPON_CLASSES = ["pistol", "rifle", "knife", "bomb", "gun", "weapon"]
|
25 |
+
|
26 |
+
# Detection function
|
27 |
def detect_weapons(image):
|
28 |
results = model(image)
|
29 |
+
detected_classes = results.pandas().xyxy[0]['name']
|
30 |
+
weapons = [cls for cls in detected_classes if cls in WEAPON_CLASSES]
|
31 |
+
threat_message = "Threat detected: Be careful" if weapons else "No threat detected"
|
|
|
32 |
return threat_message, Image.fromarray(results.render()[0])
|
33 |
|
34 |
+
# Real-time detection from webcam
|
35 |
+
def detect_from_camera():
|
36 |
+
cap = cv2.VideoCapture(0) # Open webcam (use 0 for default camera)
|
37 |
+
while cap.isOpened():
|
38 |
+
ret, frame = cap.read()
|
39 |
+
if not ret:
|
40 |
+
break
|
41 |
+
# Convert frame (OpenCV format) to PIL image
|
42 |
+
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
43 |
+
results = model(image)
|
44 |
+
detected_classes = results.pandas().xyxy[0]['name']
|
45 |
+
weapons = [cls for cls in detected_classes if cls in WEAPON_CLASSES]
|
46 |
+
annotated_frame = np.array(results.render()[0])
|
47 |
+
|
48 |
+
# Display live feed with annotations
|
49 |
+
cv2.imshow("Weapon Detection", cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR))
|
50 |
+
if cv2.waitKey(1) & 0xFF == ord('q'): # Press 'q' to quit
|
51 |
+
break
|
52 |
+
cap.release()
|
53 |
+
cv2.destroyAllWindows()
|
54 |
|
55 |
+
# Gradio interface for image uploads
|
56 |
iface = gr.Interface(
|
57 |
+
fn=detect_weapons,
|
58 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
59 |
+
outputs=[
|
60 |
+
gr.Textbox(label="Threat Detection"),
|
61 |
+
gr.Image(label="Detected Image"),
|
62 |
],
|
63 |
title="Weapon Detection AI",
|
64 |
+
description="Upload an image to detect weapons like bombs, guns, and pistols. For real-time detection, use the live camera option."
|
65 |
)
|
66 |
|
67 |
+
# Main entry point
|
68 |
+
def main():
|
69 |
+
print("Select mode:")
|
70 |
+
print("1. Image Upload (Gradio Interface)")
|
71 |
+
print("2. Live Camera Detection")
|
72 |
+
choice = input("Enter your choice (1 or 2): ").strip()
|
73 |
+
if choice == "1":
|
74 |
+
iface.launch()
|
75 |
+
elif choice == "2":
|
76 |
+
detect_from_camera()
|
77 |
+
else:
|
78 |
+
print("Invalid choice. Please restart and select 1 or 2.")
|
79 |
|
80 |
+
if __name__ == "__main__":
|
81 |
+
main()
|