Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,15 @@
|
|
1 |
import os
|
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from peft import PeftModel
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
from pydantic import BaseModel
|
7 |
|
|
|
|
|
|
|
|
|
8 |
# Initialize FastAPI
|
9 |
app = FastAPI()
|
10 |
|
@@ -17,43 +22,90 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
17 |
if HF_TOKEN is None:
|
18 |
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
19 |
|
20 |
-
# Define the
|
21 |
-
|
22 |
-
os.makedirs(
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Define request body
|
47 |
class Query(BaseModel):
|
48 |
text: str
|
|
|
|
|
49 |
|
50 |
# Define the text generation endpoint
|
51 |
@app.post("/generate")
|
52 |
async def generate_text(query: Query):
|
53 |
try:
|
|
|
|
|
54 |
inputs = tokenizer(query.text, return_tensors="pt").to(model.device)
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
57 |
return {"response": response_text}
|
58 |
except Exception as e:
|
|
|
59 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import logging
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
from peft import PeftModel
|
6 |
from fastapi import FastAPI, HTTPException
|
7 |
from pydantic import BaseModel
|
8 |
|
9 |
+
# Configure logging
|
10 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
# Initialize FastAPI
|
14 |
app = FastAPI()
|
15 |
|
|
|
22 |
if HF_TOKEN is None:
|
23 |
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
24 |
|
25 |
+
# Define the cache directory
|
26 |
+
CACHE_DIR = "/app/cache"
|
27 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
28 |
+
|
29 |
+
try:
|
30 |
+
# Load tokenizer with authentication
|
31 |
+
logger.info(f"Loading tokenizer from {BASE_MODEL}")
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
33 |
+
BASE_MODEL,
|
34 |
+
token=HF_TOKEN,
|
35 |
+
cache_dir=CACHE_DIR
|
36 |
+
)
|
37 |
+
|
38 |
+
# Load base model with simplified configuration
|
39 |
+
logger.info(f"Loading base model from {BASE_MODEL}")
|
40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
41 |
+
BASE_MODEL,
|
42 |
+
torch_dtype=torch.float16,
|
43 |
+
device_map="auto",
|
44 |
+
token=HF_TOKEN,
|
45 |
+
cache_dir=CACHE_DIR,
|
46 |
+
trust_remote_code=True
|
47 |
+
)
|
48 |
+
|
49 |
+
# Load fine-tuned adapter with simplified approach
|
50 |
+
logger.info(f"Loading adapter from {FINETUNED_MODEL}")
|
51 |
+
adapter_model = PeftModel.from_pretrained(
|
52 |
+
model,
|
53 |
+
FINETUNED_MODEL,
|
54 |
+
token=HF_TOKEN,
|
55 |
+
device_map="auto",
|
56 |
+
torch_dtype=torch.float16,
|
57 |
+
is_trainable=False # Set to False for inference
|
58 |
+
)
|
59 |
+
|
60 |
+
# Merge adapter weights with base model for better performance (optional)
|
61 |
+
logger.info("Merging adapter weights with base model")
|
62 |
+
model = adapter_model.merge_and_unload()
|
63 |
+
|
64 |
+
logger.info("Model loading completed successfully")
|
65 |
+
except Exception as e:
|
66 |
+
logger.error(f"Error loading model: {str(e)}")
|
67 |
+
raise
|
68 |
|
69 |
# Define request body
|
70 |
class Query(BaseModel):
|
71 |
text: str
|
72 |
+
max_tokens: int = 200
|
73 |
+
temperature: float = 0.7
|
74 |
|
75 |
# Define the text generation endpoint
|
76 |
@app.post("/generate")
|
77 |
async def generate_text(query: Query):
|
78 |
try:
|
79 |
+
logger.info(f"Generating text for input: {query.text[:50]}...")
|
80 |
+
|
81 |
inputs = tokenizer(query.text, return_tensors="pt").to(model.device)
|
82 |
+
|
83 |
+
with torch.no_grad():
|
84 |
+
output = model.generate(
|
85 |
+
**inputs,
|
86 |
+
max_new_tokens=query.max_tokens,
|
87 |
+
temperature=query.temperature,
|
88 |
+
do_sample=True if query.temperature > 0 else False
|
89 |
+
)
|
90 |
+
|
91 |
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
92 |
+
logger.info("Text generation successful")
|
93 |
+
|
94 |
return {"response": response_text}
|
95 |
except Exception as e:
|
96 |
+
logger.error(f"Error in text generation: {str(e)}")
|
97 |
raise HTTPException(status_code=500, detail=str(e))
|
98 |
+
|
99 |
+
# Health check endpoint
|
100 |
+
@app.get("/health")
|
101 |
+
async def health_check():
|
102 |
+
return {"status": "healthy"}
|
103 |
+
|
104 |
+
# Model info endpoint
|
105 |
+
@app.get("/info")
|
106 |
+
async def model_info():
|
107 |
+
return {
|
108 |
+
"base_model": BASE_MODEL,
|
109 |
+
"adapter_model": FINETUNED_MODEL,
|
110 |
+
"device": str(model.device)
|
111 |
+
}
|