Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from datasets import load_dataset
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
+
|
7 |
+
pipe_ar = pipeline('text-generation', framework='pt', model='akhooli/ap2023', tokenizer='akhooli/ap2023')
|
8 |
+
pipe_en = pipeline("text-generation", model="ismaelfaro/gpt2-poems.en")
|
9 |
+
pipe_image = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
10 |
+
pipe_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ar-en")
|
11 |
+
|
12 |
+
# Initialize text-to-speech models for Arabic and English
|
13 |
+
# Arabic: text-to-speech
|
14 |
+
synthesiser_arabic = pipeline("text-to-speech", model="MBZUAI/speecht5_tts_clartts_ar")
|
15 |
+
embeddings_dataset_arabic = load_dataset("herwoww/arabic_xvector_embeddings", split="validation")
|
16 |
+
speaker_embedding_arabic = torch.tensor(embeddings_dataset_arabic[105]["speaker_embeddings"]).unsqueeze(0)
|
17 |
+
|
18 |
+
# English: text-to-speech
|
19 |
+
synthesiser_english = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
20 |
+
embeddings_dataset_english = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
+
speaker_embedding_english = torch.tensor(embeddings_dataset_english[7306]["xvector"]).unsqueeze(0)
|
22 |
+
|
23 |
+
# Generate poem based on language and convert it to audio and image
|
24 |
+
def generate_poem(selected_language, text):
|
25 |
+
if selected_language == "English":
|
26 |
+
poem = generate_poem_english(text) #retrun the generated poem from the generate_poem_english function
|
27 |
+
sampling_rate, audio_data = text_to_speech_english(poem) #return the audio from the text_to_speech_english function
|
28 |
+
image = generate_image_from_poem(text) #return the image from the generate_image_from_poem function
|
29 |
+
elif selected_language == "Arabic":
|
30 |
+
poem = generate_poem_arabic(text) #retrun the generated poem from the generate_poem_arabic function
|
31 |
+
sampling_rate, audio_data = text_to_speech_arabic(poem) #return the audio from the text_to_speech_arabic function
|
32 |
+
translated_text = translate_arabic_to_english(text) #return the translated poem from arabic to englsih, using translate_arabic_to_english function
|
33 |
+
image = generate_image_from_poem(translated_text) #return the image from the generate_image_from_poem function
|
34 |
+
|
35 |
+
return poem, (sampling_rate, audio_data), image
|
36 |
+
|
37 |
+
# Poem generation for Arabic
|
38 |
+
def generate_poem_arabic(text):
|
39 |
+
generated_text = pipe_ar(text, do_sample=True, max_length=96, top_k=50, top_p=1.0, temperature=1.0, num_return_sequences=1,
|
40 |
+
no_repeat_ngram_size = 3, return_full_text=True)[0]["generated_text"]
|
41 |
+
clean_text = generated_text.replace("-", "") #To get rid of the dashs generated by the model.
|
42 |
+
return clean_text
|
43 |
+
|
44 |
+
# Poem generation for English
|
45 |
+
def generate_poem_english(text):
|
46 |
+
generated_text = pipe_en(text, do_sample=True, max_length=50)[0]['generated_text']
|
47 |
+
clean_text = generated_text.replace("-", "") # Remove dashes generated by the model
|
48 |
+
clean_text = clean_text.replace("\\n", " ") # Replace newlines with a space
|
49 |
+
return clean_text
|
50 |
+
|
51 |
+
# Text-to-speech conversion for Arabic
|
52 |
+
def text_to_speech_arabic(text):
|
53 |
+
speech = synthesiser_arabic(text, forward_params={"speaker_embeddings": speaker_embedding_arabic})
|
54 |
+
audio_data = speech["audio"]
|
55 |
+
sampling_rate = speech["sampling_rate"]
|
56 |
+
return (sampling_rate, audio_data)
|
57 |
+
|
58 |
+
# Text-to-speech conversion for English
|
59 |
+
def text_to_speech_english(text):
|
60 |
+
speech = synthesiser_english(text, forward_params={"speaker_embeddings": speaker_embedding_english})
|
61 |
+
audio_data = speech["audio"]
|
62 |
+
sampling_rate = speech["sampling_rate"]
|
63 |
+
return (sampling_rate, audio_data)
|
64 |
+
|
65 |
+
#Image Function
|
66 |
+
def generate_image_from_poem(poem_text):
|
67 |
+
image = pipe_image(poem_text).images[0]
|
68 |
+
return image
|
69 |
+
|
70 |
+
#Translation Function from Arabic to English
|
71 |
+
def translate_arabic_to_english(text):
|
72 |
+
translated_text = pipe_translator(text)[0]['translation_text']
|
73 |
+
return translated_text
|
74 |
+
|
75 |
+
custom_css = """
|
76 |
+
body {
|
77 |
+
background-color: #f4f4f9;
|
78 |
+
color: #333;
|
79 |
+
}
|
80 |
+
.gradio-container {
|
81 |
+
border-radius: 10px;
|
82 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
83 |
+
background-color: #fff;
|
84 |
+
}
|
85 |
+
label {
|
86 |
+
color: #4A90E2;
|
87 |
+
font-weight: bold;
|
88 |
+
}
|
89 |
+
|
90 |
+
input[type="text"],
|
91 |
+
textarea {
|
92 |
+
border: 1px solid #4A90E2;
|
93 |
+
}
|
94 |
+
textarea {
|
95 |
+
height: 150px;
|
96 |
+
}
|
97 |
+
|
98 |
+
button {
|
99 |
+
background-color: #4A90E2;
|
100 |
+
color: #fff;
|
101 |
+
border-radius: 5px;
|
102 |
+
cursor: pointer;
|
103 |
+
}
|
104 |
+
button:hover {
|
105 |
+
background-color: #357ABD;
|
106 |
+
}
|
107 |
+
|
108 |
+
.dropdown {
|
109 |
+
border: 1px solid #4A90E2;
|
110 |
+
border-radius: 4px;
|
111 |
+
}
|
112 |
+
|
113 |
+
"""
|
114 |
+
|
115 |
+
examples = [
|
116 |
+
#First parameter is for the dropdown menu, and the second parameter is for the starter of the poem
|
117 |
+
["English", "The shining sun rises over the calm ocean"],
|
118 |
+
["Arabic", "الورود تتفتح في الربيع"],
|
119 |
+
["English", "The night sky is filled with stars and dreams"],
|
120 |
+
["Arabic", "اشعة الشمس المشرقة"]
|
121 |
+
]
|
122 |
+
|
123 |
+
my_model = gr.Interface(
|
124 |
+
fn=generate_poem, #The primary function that will recives the inputs (language and the starter of the poem)
|
125 |
+
inputs=[
|
126 |
+
gr.Dropdown(["English", "Arabic"], label="Select Language"), #Dropdown menu to select the language, either "English" or "Arabic" for the poem
|
127 |
+
gr.Textbox(label="Enter a sentence")], #Textbox where the user will input a sentence or phrase to generate the poem (starter of the peom)
|
128 |
+
|
129 |
+
outputs=[
|
130 |
+
gr.Textbox(label="Generated Poem", lines=10), # Textbox to display the generated poem
|
131 |
+
gr.Audio(label="Generated Audio", type="numpy"), #Audio output for the generated poem
|
132 |
+
gr.Image(label="Generated Image")], #Display an image generated from the starter of the peom
|
133 |
+
|
134 |
+
examples=examples, #Predefined examples to guide the user how to use the interface
|
135 |
+
css=custom_css #Applying CSS Custeom
|
136 |
+
)
|
137 |
+
my_model.launch()
|