Spaces:
Running
Running
File size: 2,386 Bytes
65c6479 441cdc8 e608ddc 97d7225 65c6479 9c1b957 97d7225 9c1b957 e608ddc 65c6479 97d7225 441cdc8 e608ddc 441cdc8 9c1b957 441cdc8 9c1b957 97d7225 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
import pandas as pd
import os
from huggingface_hub import snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.envs import API
# clone / pull the lmeh eval data
TOKEN = os.environ.get("TOKEN", None)
RESULTS_REPO = f"lukecq/SeaExam-results"
CACHE_PATH=os.getenv("HF_HOME", ".")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset",
token=TOKEN
)
def restart_space():
API.restart_space(repo_id="lukecq/SeaExam_leaderboard", token=TOKEN)
# Load the CSV file
def load_csv(file_path):
data = pd.read_csv(file_path)
return data
# Example path to your CSV file
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results_0419.csv'
data = load_csv(csv_path)
def show_data():
return data
# iface = gr.Interface(fn=show_data, inputs = None, outputs="dataframe", title="SeaExam Leaderboard",
# description="Leaderboard for the SeaExam competition.")
# iface.launch()
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard_table = gr.components.Dataframe(
value=data,
# value=leaderboard_df[
# [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
# + shown_columns.value
# + [AutoEvalColumn.dummy.name]
# ],
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
# datatype=TYPES,
# elem_id="leaderboard-table",
interactive=False,
visible=True,
# column_widths=["2%", "33%"]
)
demo.launch()
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=20)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|