import gradio as gr import datetime import json import os import calendar from pathlib import Path import plotly.graph_objects as go import plotly.express as px import numpy as np # Create data directory if it doesn't exist DATA_DIR = Path("daily_data") try: DATA_DIR.mkdir(parents=True, exist_ok=True) except Exception as e: print(f"Error creating data directory: {e}") JOURNAL_QUESTIONS = [ "What made you happiest today, and why?", "What was the biggest challenge you faced today, and how did you approach it?", "What's one thing you learned or realized today?", "What are you grateful for today?", "What emotion did you feel the most today? What triggered it?", "What's one moment or interaction that stood out to you?", "What progress did you make toward your goals today?", "Did you notice any recurring habits or patterns in your day?", "How did you support or connect with someone today?", "What could you have done differently to improve your day?", "What's one thing you want to prioritize or focus on tomorrow?", "If today were a chapter in your life story, what would its title be?" ] def get_date_key(): """Get current date in YYYY-MM-DD format""" return datetime.datetime.now().strftime("%Y-%m-%d") def save_daily_data(data, date_key=None): """Save daily data to JSON file""" if date_key is None: date_key = get_date_key() # Ensure data is a dictionary if not isinstance(data, dict): data = create_empty_daily_data() # Convert DataFrame to list for JSON serialization if "focus" in data: if "priorities" in data["focus"]: priorities = data["focus"]["priorities"] if hasattr(priorities, '__array__') or hasattr(priorities, 'values'): data["focus"]["priorities"] = priorities.values.tolist() if hasattr(priorities, 'values') else priorities.tolist() if "later" in data["focus"]: later = data["focus"]["later"] if hasattr(later, '__array__') or hasattr(later, 'values'): data["focus"]["later"] = later.values.tolist() if hasattr(later, 'values') else later.tolist() # Deep merge required fields with existing data required_fields = { "tracking_metrics": { "productivity": 0, "energy": 0, "mood": 0, "sleep_quality": 0, "exercise_intensity": 0 }, "habits": {}, "focus": { "priorities": [], "later": [], "priority_reward": "", "later_reward": "" }, "meals": { "breakfast": "", "lunch": "", "dinner": "", "snacks": "" }, "last_updated": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") } for key, default_value in required_fields.items(): if key not in data: data[key] = default_value elif isinstance(default_value, dict): for subkey, subvalue in default_value.items(): if subkey not in data[key]: data[key][subkey] = subvalue file_path = DATA_DIR / f"{date_key}.json" try: # Ensure the directory exists again (in case it was deleted) DATA_DIR.mkdir(parents=True, exist_ok=True) # Write directly to the file first with open(file_path, 'w') as f: json.dump(data, f, indent=2, sort_keys=True) except Exception as e: print(f"Error saving data: {e}") try: # Fallback: try to save in the current directory with open(f"{date_key}.json", 'w') as f: json.dump(data, f, indent=2, sort_keys=True) print(f"Saved data to current directory as fallback") except Exception as e2: print(f"Final save attempt failed: {e2}") def clean_daily_data_file(date_key): """Clean up corrupted JSON file and restore it with valid data""" file_path = DATA_DIR / f"{date_key}.json" try: if file_path.exists(): with open(file_path, 'r') as f: content = f.read().strip() try: # Try to parse the content directly first data = json.loads(content) return validate_data_structure(data) except json.JSONDecodeError: # If that fails, try to clean the content content = content.rstrip(', \t\n\r') last_brace = content.rfind('}') if last_brace != -1: content = content[:last_brace + 1] try: data = json.loads(content) data = validate_data_structure(data) # Save the cleaned data save_daily_data(data, date_key) return data except: pass # If all cleaning attempts fail, create new data print(f"Creating new data for {date_key}") data = create_empty_daily_data() save_daily_data(data, date_key) return data except Exception as e: print(f"Error cleaning data file {date_key}: {e}") return create_empty_daily_data() def load_daily_data(date_key=None): """Load daily data from JSON file""" if date_key is None: date_key = get_date_key() file_path = DATA_DIR / f"{date_key}.json" try: if file_path.exists(): try: # Try to load and clean the file data = clean_json_file(file_path) # Validate and update the data structure data = validate_data_structure(data) save_daily_data(data, date_key) return data except Exception as e: print(f"Error loading data: {e}") return create_empty_daily_data() else: # Only create new file if it's today's date if date_key == get_date_key(): data = create_empty_daily_data() save_daily_data(data, date_key) return data else: return create_empty_daily_data() except Exception as e: print(f"Error loading data: {e}") return create_empty_daily_data() def validate_data_structure(data): """Validate and update data structure if needed""" if not isinstance(data, dict): return create_empty_daily_data() # Create a new data structure with all required fields valid_data = create_empty_daily_data() # Copy existing data while ensuring all required fields exist for key, default_value in valid_data.items(): if key in data: if isinstance(default_value, dict): valid_data[key] = {**default_value, **data[key]} else: valid_data[key] = data[key] return valid_data def create_empty_daily_data(): """Create empty data structure for a new day""" # Load current habits list current_habits = load_habits() data = { "habits": {habit: [False] * 7 for habit in current_habits}, "focus": { "priorities": [ ["", ""], # Empty task and status ["", ""], ["", ""], ["", ""], ["", ""] ], "later": [ ["", ""], # Empty task and status ["", ""], ["", ""], ["", ""], ["", ""] ], "priority_reward": "", "later_reward": "" }, "meals": { "breakfast": "", "lunch": "", "dinner": "", "snacks": "" }, "last_updated": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "tracking_metrics": { "productivity": 0, "energy": 0, "mood": 0, "sleep_quality": 0, "exercise_intensity": 0 } } # Add journal section with empty entries data["journal"] = { question: "" for question in JOURNAL_QUESTIONS } return data def get_week_dates(): """Get dates for current week""" today = datetime.date.today() monday = today - datetime.timedelta(days=today.weekday()) return [(monday + datetime.timedelta(days=i)).strftime("%Y-%m-%d") for i in range(7)] def get_month_dates(): """Get dates for current month""" today = datetime.date.today() _, num_days = calendar.monthrange(today.year, today.month) return [(datetime.date(today.year, today.month, day)).strftime("%Y-%m-%d") for day in range(1, num_days + 1)] def load_week_data(): """Load data for the current week""" week_data = {} week_dates = get_week_dates() for date in week_dates: file_path = DATA_DIR / f"{date}.json" if file_path.exists(): try: data = load_daily_data(date) week_data[date] = data except Exception as e: print(f"Error loading week data for {date}: {e}") week_data[date] = create_empty_daily_data() else: # Don't create a file, just return empty data structure week_data[date] = { "tracking_metrics": { "productivity": 0, "energy": 0, "mood": 0, "sleep_quality": 0, "exercise_intensity": 0 } } return week_data def load_month_data(): """Load data for the current month""" month_data = {} month_dates = get_month_dates() for date in month_dates: file_path = DATA_DIR / f"{date}.json" if file_path.exists(): try: data = load_daily_data(date) month_data[date] = data except Exception as e: print(f"Error loading month data for {date}: {e}") month_data[date] = create_empty_daily_data() else: # Don't create a file, just return empty data structure month_data[date] = { "tracking_metrics": { "productivity": 0, "energy": 0, "mood": 0, "sleep_quality": 0, "exercise_intensity": 0 } } return month_data def calculate_success_rate(data_dict, metric): """Calculate success rate for a given metric""" if not data_dict: return 0 total = 0 count = 0 for date, data in data_dict.items(): # Ensure tracking_metrics exists for each data point if "tracking_metrics" not in data: data["tracking_metrics"] = { "productivity": 0, "energy": 0, "mood": 0, "sleep_quality": 0, "exercise_intensity": 0 } if metric in data.get("tracking_metrics", {}): total += data["tracking_metrics"][metric] count += 1 return round((total / count) if count > 0 else 0, 2) # Replace the hardcoded HABITS list with a function to load habits def get_default_habits(): """Get the default habits list if no custom list exists""" return [ # Morning Routine (Essential) "Morning Exercise/Yoga", "Meditation (20min)", # After Work Activities "Evening Stretch (20min)", "Active Learning (20min)", "Journal", # Flexible Throughout Day "Reading (20min)", "Take a photo", "Future Planning" ] def load_habits(): """Load the current habits list from the configuration""" config_path = Path("habits_config.json") if config_path.exists(): try: with open(config_path, 'r') as f: data = json.load(f) if "habits" in data and isinstance(data["habits"], list): return data["habits"] else: # If the file exists but is invalid, create a new one with defaults default_habits = get_default_habits() save_habits(default_habits) return default_habits except Exception as e: print(f"Error loading habits: {e}") # If there's an error reading the file, create a new one with defaults default_habits = get_default_habits() save_habits(default_habits) return default_habits else: # If the file doesn't exist, create it with defaults default_habits = get_default_habits() save_habits(default_habits) return default_habits def save_habits(habits_list): """Save the current habits list to configuration""" config_path = Path("habits_config.json") try: # Ensure the list is unique and sorted habits_list = sorted(list(set(habits_list))) # Save to config file with open(config_path, 'w') as f: json.dump({"habits": habits_list}, f, indent=2) # Also update the current day's data to match current_data = load_daily_data() new_habits = {habit: [False] * 7 for habit in habits_list} # Preserve existing habit states for habit, states in current_data["habits"].items(): if habit in new_habits: new_habits[habit] = states current_data["habits"] = new_habits save_daily_data(current_data) except Exception as e: print(f"Error saving habits: {e}") # Remove redundant constants DEFAULT_SELF_CARE_ITEMS = [ "Yoga (AM)", "Vitamins", "Outside", "Stretch (PM)", "Reading", "Learning", "Journal", "Tapping", "Meditate", "Brain Train" ] def parse_time(time_str): """Parse time string in either 12-hour or 24-hour format""" try: # Try 24-hour format first return datetime.datetime.strptime(time_str, "%H:%M").strftime("%H:%M") except ValueError: try: # Try 12-hour format with AM/PM return datetime.datetime.strptime(time_str.strip().upper(), "%I:%M %p").strftime("%H:%M") except ValueError: try: # Try 12-hour format without space before AM/PM return datetime.datetime.strptime(time_str.strip().upper(), "%I:%M%p").strftime("%H:%M") except ValueError: return "00:00" # Default if parsing fails def calculate_age_stats(birth_date_str, birth_time_str="00:00"): """Calculate age-related statistics with precise birth date and time""" try: # Parse birth date and time try: birth_time = parse_time(birth_time_str) except ValueError: return {"Error": "Invalid time format. Please use either HH:MM (24-hour) or HH:MM AM/PM (12-hour)"} birth_datetime = datetime.datetime.strptime(f"{birth_date_str} {birth_time}", "%Y-%m-%d %H:%M") now = datetime.datetime.now() # Calculate time differences time_lived = now - birth_datetime age_days = time_lived.days age_hours = time_lived.total_seconds() / 3600 age_minutes = time_lived.total_seconds() / 60 age_weeks = age_days / 7 age_months = age_days / 30.44 age_years = age_days / 365.25 # Calculate time until milestones days_until_90 = (datetime.datetime(birth_datetime.year + 90, birth_datetime.month, birth_datetime.day) - now).days weeks_until_90 = days_until_90 / 7 months_until_90 = days_until_90 / 30.44 years_until_90 = days_until_90 / 365.25 # Calculate percentages and milestones percent_lived = (age_years / 90) * 100 percent_of_year = (now.timetuple().tm_yday / 365.25) * 100 percent_of_month = (now.day / calendar.monthrange(now.year, now.month)[1]) * 100 percent_of_week = ((now.weekday() + 1) / 7) * 100 percent_of_day = ((now.hour * 3600 + now.minute * 60 + now.second) / 86400) * 100 # Calculate next birthday next_birthday = datetime.datetime(now.year, birth_datetime.month, birth_datetime.day) if next_birthday < now: next_birthday = datetime.datetime(now.year + 1, birth_datetime.month, birth_datetime.day) days_to_birthday = (next_birthday - now).days return { "Current Age": { "Years": f"{age_years:.2f}", "Months": f"{age_months:.1f}", "Weeks": f"{age_weeks:.1f}", "Days": str(age_days), "Hours": f"{age_hours:,.0f}", "Minutes": f"{age_minutes:,.0f}" }, "Time Until 90": { "Years": f"{years_until_90:.1f}", "Months": f"{months_until_90:.1f}", "Weeks": f"{weeks_until_90:.1f}", "Days": str(days_until_90) }, "Life Progress": { "Life Percentage": f"{percent_lived:.1f}%", "Current Year": f"{percent_of_year:.1f}%", "Current Month": f"{percent_of_month:.1f}%", "Current Week": f"{percent_of_week:.1f}%", "Current Day": f"{percent_of_day:.1f}%" }, "Milestones": { "Days to Next Birthday": str(days_to_birthday), "Weeks Lived": f"{age_weeks:,.0f}", "Days Lived": f"{age_days:,d}", "Hours Lived": f"{age_hours:,.0f}", "10,000 Days": f"{10000 - (age_days % 10000)} days until next 10k milestone", "Life Seasons": f"You are in season {int(age_years/20) + 1} of your life" } } except ValueError as e: return {"Error": f"Invalid date or time format. Please use YYYY-MM-DD for date and HH:MM (24-hour) or HH:MM AM/PM (12-hour) for time."} def update_progress(checkboxes): """Calculate progress percentage""" completed = sum(1 for x in checkboxes if x) total = len(checkboxes) return f"{(completed/total)*100:.1f}%" if total > 0 else "0%" def check_and_refresh_day(current_data): """Check if we need to start a new day""" # Ensure tracking_metrics exists if "tracking_metrics" not in current_data: current_data["tracking_metrics"] = { "productivity": 0, "energy": 0, "mood": 0, "sleep_quality": 0, "exercise_intensity": 0 } last_updated = datetime.datetime.strptime(current_data["last_updated"], "%Y-%m-%d %H:%M:%S") current_time = datetime.datetime.now() # If it's a new day (past midnight) if last_updated.date() < current_time.date(): # Save current data with previous date previous_date = last_updated.strftime("%Y-%m-%d") save_daily_data(current_data, previous_date) # Create new empty data for today current_data = create_empty_daily_data() save_daily_data(current_data) # Always return the current data return current_data def update_data(data_key, value): """Update specific data in the daily record""" current_data = load_daily_data() current_data = check_and_refresh_day(current_data) # Convert value to list only if it's a DataFrame or numpy array and not a dict if not isinstance(value, dict) and (hasattr(value, '__array__') or hasattr(value, 'values')): value = value.values.tolist() if hasattr(value, 'values') else value.tolist() # Update the specified data keys = data_key.split('.') target = current_data # Special handling for habits which are stored as lists if keys[0] == "habits" and len(keys) == 3: habit_name = keys[1] day_index = int(keys[2]) # Convert string index to integer if habit_name in target["habits"]: target["habits"][habit_name][day_index] = value else: # Normal dictionary path traversal for key in keys[:-1]: target = target[key] target[keys[-1]] = value current_data["last_updated"] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") save_daily_data(current_data) return current_data def update_activity(new_name, old_name): """Update a self-care activity name and maintain its status""" if not new_name.strip() or new_name == old_name: return gr.update() try: current_data = load_daily_data() # Ensure proper data structure if "self_care" not in current_data or not isinstance(current_data["self_care"], dict): current_data["self_care"] = { "items": DEFAULT_SELF_CARE_ITEMS.copy(), "status": {item: "Not Done" for item in DEFAULT_SELF_CARE_ITEMS} } if "items" not in current_data["self_care"]: current_data["self_care"]["items"] = list(current_data["self_care"].keys()) current_data["self_care"]["status"] = current_data["self_care"].copy() # Update activity in items list if old_name in current_data["self_care"]["items"]: idx = current_data["self_care"]["items"].index(old_name) current_data["self_care"]["items"][idx] = new_name.strip() # Update status if "status" in current_data["self_care"]: if old_name in current_data["self_care"]["status"]: current_data["self_care"]["status"][new_name.strip()] = current_data["self_care"]["status"].pop(old_name) save_daily_data(current_data) return gr.update() except Exception as e: print(f"Error updating activity: {e}") return gr.update() def create_life_visualizations(stats): figures = {} # 1. Life Progress Donut Chart progress_data = {k: float(v.strip('%')) for k, v in stats["Life Progress"].items()} fig_progress = go.Figure(data=[go.Pie( labels=list(progress_data.keys()), values=list(progress_data.values()), hole=.3, marker_colors=px.colors.qualitative.Set3 )]) fig_progress.update_layout(title="Life Progress Metrics") figures["progress"] = fig_progress # 2. Time Remaining Bar Chart time_until = {k: float(v) for k, v in stats["Time Until 90"].items()} fig_remaining = go.Figure(data=[go.Bar( x=list(time_until.keys()), y=list(time_until.values()), marker_color='lightblue' )]) fig_remaining.update_layout(title="Time Until 90") figures["remaining"] = fig_remaining # 3. Life Timeline current_year = float(stats["Current Age"]["Years"]) fig_timeline = go.Figure() # Add seasons seasons = [ {"name": "Learning & Discovery", "start": 0, "end": 20, "color": "lightgreen"}, {"name": "Creation & Building", "start": 20, "end": 40, "color": "lightblue"}, {"name": "Mastery & Leadership", "start": 40, "end": 60, "color": "lightyellow"}, {"name": "Wisdom & Guidance", "start": 60, "end": 80, "color": "lightpink"}, {"name": "Legacy & Reflection", "start": 80, "end": 90, "color": "lavender"} ] for season in seasons: fig_timeline.add_shape( type="rect", x0=season["start"], x1=season["end"], y0=0, y1=1, fillcolor=season["color"], opacity=0.3, layer="below", line_width=0, ) # Add current age marker fig_timeline.add_trace(go.Scatter( x=[current_year, current_year], y=[0, 1], mode="lines", line=dict(color="red", width=2), name="Current Age" )) fig_timeline.update_layout( title="Life Seasons Timeline", xaxis_title="Age", yaxis_showticklabels=False, showlegend=True ) figures["timeline"] = fig_timeline return figures def update_metrics(prod, en, m, slp, ex, selected_date=None): """Update tracking metrics and return updated weekly grid""" if selected_date is None: selected_date = get_date_key() # Load data for the selected date current_data = load_daily_data(selected_date) # Update the metrics current_data["tracking_metrics"] = { "productivity": prod, "energy": en, "mood": m, "sleep_quality": slp, "exercise_intensity": ex } # Save the updated data save_daily_data(current_data, selected_date) # Reload week data to get updated grid week_data = load_week_data() # Create updated weekly grid values week_dates = get_week_dates() grid_values = [ ["Productivity"] + [week_data[date]["tracking_metrics"]["productivity"] for date in week_dates], ["Energy"] + [week_data[date]["tracking_metrics"]["energy"] for date in week_dates], ["Mood"] + [week_data[date]["tracking_metrics"]["mood"] for date in week_dates], ["Sleep"] + [week_data[date]["tracking_metrics"]["sleep_quality"] for date in week_dates], ["Exercise"] + [week_data[date]["tracking_metrics"]["exercise_intensity"] for date in week_dates] ] # Calculate monthly averages month_data = load_month_data() avg_prod = calculate_success_rate(month_data, "productivity") avg_energy = calculate_success_rate(month_data, "energy") avg_mood = calculate_success_rate(month_data, "mood") avg_sleep = calculate_success_rate(month_data, "sleep_quality") avg_exercise = calculate_success_rate(month_data, "exercise_intensity") return [ grid_values, # Weekly grid values f"Average Productivity: {avg_prod}/5", f"Average Energy: {avg_energy}/5", f"Average Mood: {avg_mood}/5", f"Average Sleep: {avg_sleep}/5", f"Average Exercise: {avg_exercise}/5" ] def update_journal_entry(question, answer): """Update a specific journal entry""" current_data = load_daily_data() # Ensure journal section exists if "journal" not in current_data: current_data["journal"] = {q: "" for q in JOURNAL_QUESTIONS} # Update the specific question's answer current_data["journal"][question] = answer # Save the updated data save_daily_data(current_data) return current_data # Add this function to format the stats display def create_stats_display(stats): # Current Age Section current_age = f""" ### 🎂 Current Age - **Years:** {stats["Current Age"]["Years"]} years - **Months:** {stats["Current Age"]["Months"]} months - **Weeks:** {stats["Current Age"]["Weeks"]} weeks - **Days:** {stats["Current Age"]["Days"]} days ⏰ You've been alive for: - **{stats["Current Age"]["Hours"]}** hours - **{stats["Current Age"]["Minutes"]}** minutes """ # Time Until 90 Section time_remaining = f""" ### ⏳ Time Until 90 - **Years:** {stats["Time Until 90"]["Years"]} years - **Months:** {stats["Time Until 90"]["Months"]} months - **Weeks:** {stats["Time Until 90"]["Weeks"]} weeks - **Days:** {stats["Time Until 90"]["Days"]} days """ # Progress Section progress = f""" ### 📊 Life Progress - **Life Journey:** {stats["Life Progress"]["Life Percentage"]} complete - **This Year:** {stats["Life Progress"]["Current Year"]} complete - **This Month:** {stats["Life Progress"]["Current Month"]} complete - **This Week:** {stats["Life Progress"]["Current Week"]} complete - **Today:** {stats["Life Progress"]["Current Day"]} complete """ # Milestones Section milestones = f""" ### 🏆 Key Milestones - **Next Birthday:** {stats["Milestones"]["Days to Next Birthday"]} days away - **Weeks Journey:** {stats["Milestones"]["Weeks Lived"]} weeks lived - **Days Journey:** {stats["Milestones"]["Days Lived"]} days experienced - **Hours Journey:** {stats["Milestones"]["Hours Lived"]} hours lived - **10k Milestone:** {stats["Milestones"]["10,000 Days"]} - **Life Season:** {stats["Milestones"]["Life Seasons"]} """ return current_age, time_remaining, progress, milestones # Add this function to format daily data for display def format_daily_summary(date, data): """Format daily data into a summary row for the history table""" try: metrics = data.get("tracking_metrics", {}) habits_completed = sum(1 for habit in data.get("habits", {}).values() for done in habit if done) total_habits = len(data.get("habits", {})) * 7 habits_percent = f"{(habits_completed/total_habits)*100:.1f}%" if total_habits > 0 else "0%" journal_entries = sum(1 for entry in data.get("journal", {}).values() if entry.strip()) # Format date for display display_date = datetime.datetime.strptime(date, "%Y-%m-%d").strftime("%Y-%m-%d (%a)") return [ display_date, metrics.get("productivity", 0), metrics.get("energy", 0), metrics.get("mood", 0), metrics.get("sleep_quality", 0), metrics.get("exercise_intensity", 0), habits_percent, journal_entries ] except Exception as e: print(f"Error formatting data for {date}: {e}") return [date, 0, 0, 0, 0, 0, "0%", 0] # Add this function to load history data def load_history_data(): """Load all available daily data files""" history_data = [] # Get all JSON files in the data directory json_files = sorted(DATA_DIR.glob("*.json"), reverse=True) # Sort newest first for file_path in json_files: date = file_path.stem # Get date from filename try: with open(file_path, 'r') as f: data = json.load(f) # Format the data for display history_data.append(format_daily_summary(date, data)) except Exception as e: print(f"Error loading {file_path}: {e}") return history_data def save_user_config(birth_date, birth_time): """Save user configuration data""" try: # Validate date format datetime.datetime.strptime(birth_date, "%Y-%m-%d") # Convert time to 24-hour format formatted_time = parse_time(birth_time) config = { "birth_date": birth_date, "birth_time": formatted_time } config_path = Path("user_config.json") with open(config_path, "w") as f: json.dump(config, f, indent=2) return True except Exception as e: print(f"Error saving config: {e}") return False def load_user_config(): """Load user configuration data""" config_path = Path("user_config.json") default_config = { "birth_date": "", # Your birth date "birth_time": "" # Your birth time in 24-hour format } if config_path.exists(): try: with open(config_path, "r") as f: config = json.load(f) # Validate loaded data datetime.datetime.strptime(config["birth_date"], "%Y-%m-%d") parse_time(config["birth_time"]) return config except Exception as e: print(f"Error loading config: {e}") return default_config def add_new_habit(habit_name, duration, category): """Add a new habit to the tracking system""" try: if not habit_name.strip(): return "⚠️ Please enter a habit name", None, None, None # Format the habit name with duration if provided formatted_habit = habit_name.strip() if duration: formatted_habit = f"{formatted_habit} ({duration})" # Add category prefix for sorting if category == "Morning": formatted_habit = f"Morning {formatted_habit}" elif category == "Evening": formatted_habit = f"Evening {formatted_habit}" # Load current habits current_habits = load_habits() # Check if habit already exists if formatted_habit in current_habits: return "⚠️ This habit already exists", None, None, None # Add new habit to list current_habits.append(formatted_habit) # Save updated habits list save_habits(current_habits) # Return success message and clear inputs return "✅ Habit added successfully!", "", "", "" except Exception as e: print(f"Error adding habit: {e}") return f"❌ Error adding habit: {str(e)}", None, None, None def create_habit_section(): """Create the habit tracking section with better layout""" # Load current habits current_habits = load_habits() # Group habits by time of day morning_habits = [h for h in current_habits if any(x in h.lower() for x in ["wake", "morning", "meditation", "brain", "walk"])] evening_habits = [h for h in current_habits if any(x in h.lower() for x in ["evening", "massage", "learning", "journal", "guitar"])] flexible_habits = [h for h in current_habits if h not in morning_habits + evening_habits] with gr.Column(scale=1): gr.Markdown("### 📅 Daily Habits & Tasks") # Create summary text component first with gr.Row(): gr.Markdown("### 📊 Weekly Summary") summary_text = gr.Markdown() refresh_btn = gr.Button("🔄 Refresh") # Add status message component status_message = gr.Markdown(visible=False) # Connect refresh button to update summary refresh_btn.click( fn=update_summary, outputs=summary_text ) # Add column headers once at the top with gr.Row(equal_height=True, variant="compact"): with gr.Column(scale=6): gr.Markdown("Task") with gr.Column(scale=7): with gr.Row(equal_height=True, variant="compact"): days = ["M", "T", "W", "Th", "F", "S", "Su"] for day in days: with gr.Column(scale=1, min_width=35): gr.Markdown(day) with gr.Column(scale=3): gr.Markdown("Progress") # Morning Section with gr.Group(): gr.Markdown("#### 🌅 Morning Routine") create_habit_group(morning_habits, summary_text) gr.Markdown("---") # Evening Section with gr.Group(): gr.Markdown("#### 🌙 Evening Activities") create_habit_group(evening_habits, summary_text) gr.Markdown("---") # Flexible Section with gr.Group(): gr.Markdown("#### ⭐ Flexible Activities") create_habit_group(flexible_habits, summary_text) gr.Markdown("---") # Add new habit section with gr.Row(equal_height=True): new_habit = gr.Textbox( label="New Habit/Task", placeholder="Enter a new habit or task to track", scale=3, min_width=200 ) category = gr.Dropdown( choices=["Morning", "Evening", "Flexible"], label="Category", value="Flexible", scale=2, min_width=100 ) duration = gr.Dropdown( choices=["", "15min", "20min", "30min", "45min", "60min"], label="Duration", scale=2, min_width=100 ) add_btn = gr.Button("Add Habit", scale=1, min_width=100) # Add status message component status_message = gr.Markdown(visible=False) def add_and_refresh(habit_name, category, duration): message, _, _, _ = add_new_habit(habit_name, duration, category) # Reload habits and recreate sections current_habits = load_habits() morning_habits = [h for h in current_habits if any(x in h.lower() for x in ["wake", "morning", "meditation", "brain", "walk"])] evening_habits = [h for h in current_habits if any(x in h.lower() for x in ["evening", "massage", "learning", "journal", "guitar"])] flexible_habits = [h for h in current_habits if h not in morning_habits + evening_habits] # Update summary summary = update_summary() # Create updated habit groups create_habit_group(morning_habits, summary_text) create_habit_group(evening_habits, summary_text) create_habit_group(flexible_habits, summary_text) return [ message, # Status message "", # Clear habit input category, # Keep category selection "", # Clear duration input gr.update(visible=True), # Show status message gr.update(value=summary) # Update summary text ] # Connect the add button event add_btn.click( fn=add_and_refresh, inputs=[new_habit, category, duration], outputs=[ status_message, new_habit, category, duration, status_message, summary_text ] ) # Create a refresh button that will be clicked programmatically refresh_habits_btn = gr.Button("Refresh", visible=False) def add_and_refresh(habit_name, duration): message, _, _ = add_new_habit(habit_name, duration) return [ message, # Status message "", # Clear habit input "", # Clear duration input gr.update(visible=True), # Show status message True # Trigger refresh button ] # Connect the add button event add_btn.click( fn=add_and_refresh, inputs=[new_habit, duration], outputs=[ status_message, new_habit, duration, status_message, refresh_habits_btn ] ) # Connect refresh button to reload habits def reload_habits(): current_habits = load_habits() morning_habits = [h for h in current_habits if any(x in h.lower() for x in ["wake", "morning", "meditation", "brain", "walk"])] evening_habits = [h for h in current_habits if any(x in h.lower() for x in ["evening", "massage", "learning", "journal", "guitar"])] flexible_habits = [h for h in current_habits if h not in morning_habits + evening_habits] return [ gr.update(value=update_summary()), # Update summary gr.update(visible=False) # Hide status message ] refresh_habits_btn.click( fn=reload_habits, outputs=[ summary_text, status_message ] ) def create_habit_group(habits, summary_text): """Create a group of habit tracking rows with better scaling""" for habit in habits: with gr.Row(equal_height=True, variant="compact") as row: # Task name and duration (left side) with gr.Column(scale=6, min_width=300): name_edit = gr.Textbox( value=habit, label="Task Name", interactive=True, container=False, ) # Duration slider (optional, shown inline) duration_edit = None if any(x in habit.lower() for x in ["min", "hour"]): duration_edit = gr.Slider( minimum=5, maximum=60, value=int(''.join(filter(str.isdigit, habit))) if any(c.isdigit() for c in habit) else 20, step=5, label="Duration", container=False, scale=1 ) # Checkboxes container (middle) with gr.Column(scale=7, min_width=350): with gr.Row(equal_height=True, variant="compact"): days = ["M", "T", "W", "Th", "F", "S", "Su"] checkboxes = [] for day in days: with gr.Column(scale=1, min_width=30): checkbox = gr.Checkbox( label=day, container=False, scale=1, min_width=25, show_label=False ) gr.Markdown(day, container=False) checkboxes.append(checkbox) # Progress and actions (right side) with gr.Column(scale=3, min_width=150): with gr.Row(equal_height=True, variant="compact"): progress = gr.Textbox( value="0%", label="Progress", interactive=False, container=False, scale=2 ) edit_btn = gr.Button("✏️", scale=1, min_width=30) delete_btn = gr.Button("🗑️", scale=1, min_width=30) # Connect edit button handler def edit_habit(name, duration=None): if duration is not None: result = update_habit_name(habit, name, duration) gr.Info(f"Updated: {name}") return result result = update_habit_name(habit, name) gr.Info(f"Updated: {name}") return result edit_btn.click( fn=edit_habit, inputs=[name_edit] + ([duration_edit] if duration_edit else []), outputs=[name_edit] ) # Connect delete button handler def delete_habit_fn(habit_name=habit): """Delete a habit and update the UI""" try: # 1. Delete from habits_config.json first config_path = Path("habits_config.json") if config_path.exists(): with open(config_path, 'r') as f: config_data = json.load(f) if "habits" in config_data: if habit_name in config_data["habits"]: config_data["habits"].remove(habit_name) with open(config_path, 'w') as f: json.dump(config_data, f, indent=2) print(f"Removed {habit_name} from habits_config.json") # 2. Update current daily data current_data = load_daily_data() if "habits" in current_data and habit_name in current_data["habits"]: del current_data["habits"][habit_name] save_daily_data(current_data) print(f"Removed {habit_name} from current daily data") # 3. Clean up historical data json_files = list(DATA_DIR.glob("*.json")) for file_path in json_files: try: with open(file_path, 'r') as f: day_data = json.load(f) if "habits" in day_data and habit_name in day_data["habits"]: del day_data["habits"][habit_name] with open(file_path, 'w') as f: json.dump(day_data, f, indent=2) print(f"Removed {habit_name} from {file_path}") except Exception as e: print(f"Error updating file {file_path}: {e}") # Show success notification gr.Info(f"Deleted: {habit_name}") # Force reload habits from config load_habits() # Reload habits to ensure sync # Hide the row in UI return gr.update(visible=False) except Exception as e: print(f"Error deleting habit: {e}") gr.Warning(f"Failed to delete {habit_name}") return gr.update() # Connect delete button with proper output delete_btn.click( fn=delete_habit_fn, outputs=row ) # Update progress when checkboxes change def make_progress_handler(current_habit): """Create a closure for the progress handler to capture the habit name""" def update_progress_display(*checkbox_values): """Update progress display for a habit""" completed = sum(1 for x in checkbox_values if x) total = len(checkbox_values) percentage = f"{(completed/total)*100:.1f}%" if total > 0 else "0%" # Update the data current_data = load_daily_data() if current_habit in current_data["habits"]: current_data["habits"][current_habit] = list(checkbox_values) save_daily_data(current_data) return percentage return update_progress_display # Connect checkbox handlers using closure progress_handler = make_progress_handler(habit) for checkbox in checkboxes: checkbox.change( fn=progress_handler, inputs=checkboxes, outputs=progress ) def update_habit_name(old_name, new_name, duration=None): """Update habit name and optionally duration""" if not new_name.strip(): return gr.update() try: # Format new name new_full_name = new_name.strip() if duration is not None: new_full_name = f"{new_full_name} ({int(duration)}min)" # Update habits configuration current_habits = load_habits() if old_name in current_habits: current_habits.remove(old_name) current_habits.append(new_full_name) save_habits(current_habits) # Update all daily files update_all_daily_files(habit_to_rename=old_name, new_name=new_full_name) # Return update for the textbox return gr.update(value=new_full_name) except Exception as e: print(f"Error updating habit name: {e}") gr.Warning(f"Failed to update {old_name}") return gr.update() def update_summary(): """Update the weekly summary text""" current_data = load_daily_data() total_habits = len(current_data["habits"]) total_completed = sum( sum(1 for x in habit_data if x) for habit_data in current_data["habits"].values() ) total_possible = total_habits * 7 completion_rate = (total_completed / total_possible * 100) if total_possible > 0 else 0 return f""" - Total Habits: {total_habits} - Completed Tasks: {total_completed}/{total_possible} - Overall Completion Rate: {completion_rate:.1f}% """ def auto_refresh(): """Auto refresh function to check and refresh day data""" try: current_data = load_daily_data() current_data = check_and_refresh_day(current_data) save_daily_data(current_data) # Don't return anything except Exception as e: print(f"Error in auto refresh: {e}") def update_all_daily_files(habit_to_remove=None, habit_to_rename=None, new_name=None): """Update all daily data files when habits are modified""" try: # Get all JSON files in the data directory json_files = list(DATA_DIR.glob("*.json")) for file_path in json_files: try: # Load the file with open(file_path, 'r') as f: data = json.load(f) modified = False # Handle habit removal if habit_to_remove and habit_to_remove in data.get("habits", {}): del data["habits"][habit_to_remove] modified = True # Handle habit renaming if habit_to_rename and new_name and habit_to_rename in data.get("habits", {}): data["habits"][new_name] = data["habits"].pop(habit_to_rename) modified = True # Save if modified if modified: with open(file_path, 'w') as f: json.dump(data, f, indent=2, sort_keys=True) except Exception as e: print(f"Error updating file {file_path}: {e}") continue except Exception as e: print(f"Error updating daily files: {e}") def get_available_dates(): """Get list of dates with existing data files""" try: json_files = sorted(DATA_DIR.glob("*.json"), reverse=True) # Most recent first dates = [file.stem for file in json_files] # Get dates from filenames return dates except Exception as e: print(f"Error getting available dates: {e}") return [get_date_key()] # Return today's date as fallback def refresh_dates(): """Refresh the available dates in the dropdown""" dates = get_available_dates() return gr.update(choices=dates) def load_selected_date_metrics(date): """Load metrics for the selected date""" data = load_daily_data(date) metrics = data.get("tracking_metrics", { "productivity": 0, "energy": 0, "mood": 0, "sleep_quality": 0, "exercise_intensity": 0 }) return [ metrics["productivity"], metrics["energy"], metrics["mood"], metrics["sleep_quality"], metrics["exercise_intensity"] ] def load_day_details(evt: gr.SelectData): """Load detailed view of a specific day""" try: # Get clicked date (remove the day of week if present) date = evt.value[0].split(" (")[0] if isinstance(evt.value, list) else evt.value data = load_daily_data(date) # Ensure required data structures exist with defaults if "focus" not in data: data["focus"] = { "priorities": [], "later": [], "priority_reward": "", "later_reward": "" } if "meals" not in data: data["meals"] = { "breakfast": "", "lunch": "", "dinner": "", "snacks": "" } # Ensure focus lists exist and are properly formatted if not isinstance(data["focus"].get("priorities", []), list): data["focus"]["priorities"] = [] if not isinstance(data["focus"].get("later", []), list): data["focus"]["later"] = [] # Format metrics data metrics_data = [ ["Productivity", data.get("tracking_metrics", {}).get("productivity", 0)], ["Energy", data.get("tracking_metrics", {}).get("energy", 0)], ["Mood", data.get("tracking_metrics", {}).get("mood", 0)], ["Sleep Quality", data.get("tracking_metrics", {}).get("sleep_quality", 0)], ["Exercise Intensity", data.get("tracking_metrics", {}).get("exercise_intensity", 0)] ] # Format habits data with proper validation habits_data = [] habits_dict = data.get("habits", {}) # Load current habits configuration to ensure we show all configured habits current_habits = load_habits() # Create a row for each habit, using stored data if available or default values if not for habit in current_habits: status = habits_dict.get(habit, [False] * 7) # Ensure status is a list of 7 boolean values if not isinstance(status, list) or len(status) != 7: status = [False] * 7 row = [habit] row.extend(["✓" if done else "×" for done in status]) habits_data.append(row) # Sort habits by category (morning, evening, flexible) def get_habit_category(habit): if any(x in habit.lower() for x in ["wake", "morning", "meditation", "brain", "walk"]): return 0 # Morning elif any(x in habit.lower() for x in ["evening", "massage", "learning", "journal", "guitar"]): return 1 # Evening return 2 # Flexible habits_data.sort(key=lambda x: get_habit_category(x[0])) # Format journal data with validation journal_data = [] for q, a in data.get("journal", {}).items(): if isinstance(a, str): if a.strip(): journal_data.append([q, a]) # Format focus and meals data with proper validation priorities_text = "\n".join([ f"- {task[0]}: {task[1]}" if isinstance(task, list) and len(task) >= 2 else "- No task" for task in data["focus"]["priorities"] if isinstance(task, list) and len(task) >= 2 and task[0] ]) or "No priorities set" later_text = "\n".join([ f"- {task[0]}: {task[1]}" if isinstance(task, list) and len(task) >= 2 else "- No task" for task in data["focus"]["later"] if isinstance(task, list) and len(task) >= 2 and task[0] ]) or "No tasks set" focus_meals = f"""### 🎯 Focus Tasks **Must Do Today:** {priorities_text} **For Later:** {later_text} ### 🍽️ Meals - **Breakfast:** {data["meals"].get("breakfast", "") or "Not recorded"} - **Lunch:** {data["meals"].get("lunch", "") or "Not recorded"} - **Dinner:** {data["meals"].get("dinner", "") or "Not recorded"} - **Snacks:** {data["meals"].get("snacks", "") or "Not recorded"} """ return [ date, # Selected date metrics_data, # Metrics view habits_data, # Habits view journal_data, # Journal view focus_meals # Focus and meals view ] except Exception as e: print(f"Error loading details for date {date if 'date' in locals() else 'unknown'}: {str(e)}") # Return a graceful fallback with empty/default values return [ evt.value, [["No metrics data available", 0]], [["No habits data available", "×", "×", "×", "×", "×", "×", "×"]], [["No journal entries available", ""]], """### 🎯 Focus Tasks\n\n**Must Do Today:**\nNo data available\n\n**For Later:**\nNo data available\n\n### 🍽️ Meals\nNo meal data available""" ] def manual_save(): """Manually save all current data""" try: current_data = load_daily_data() save_daily_data(current_data) return "✅ Data saved successfully!" except Exception as e: print(f"Error saving data: {e}") return "❌ Error saving data" def clean_json_file(file_path): """Clean up potentially corrupted JSON file""" try: with open(file_path, 'r') as f: content = f.read().strip() # Try to find the last valid JSON structure try: # First try to parse as-is data = json.loads(content) return data except json.JSONDecodeError: # If that fails, try to clean up the content # Find the last closing brace last_brace = content.rfind('}') if last_brace != -1: content = content[:last_brace + 1] try: data = json.loads(content) # Save the cleaned data back to file with open(file_path, 'w') as f: json.dump(data, f, indent=2) return data except json.JSONDecodeError: pass # If all cleanup attempts fail, create new data data = create_empty_daily_data() with open(file_path, 'w') as f: json.dump(data, f, indent=2) return data except Exception as e: print(f"Error cleaning JSON file {file_path}: {e}") return create_empty_daily_data() with gr.Blocks() as demo: # Load initial data current_data = load_daily_data() current_data = check_and_refresh_day(current_data) # Centered, smaller logo with gr.Row(): with gr.Column(scale=2): pass # Empty column for spacing with gr.Column(scale=1): gr.Image("./logo.png", show_label=False, container=False, width=250, show_download_button=False, ) with gr.Column(scale=2): pass # Empty column for spacing with gr.Row(): date_text = gr.Textbox( value=datetime.datetime.now().strftime("%A, %B %d"), label="Date", interactive=False ) date_picker = gr.Dropdown( choices=get_available_dates(), value=get_date_key(), label="Select Date", interactive=True ) today_btn = gr.Button("Return to Today") refresh_dates_btn = gr.Button("🔄 Refresh Dates") save_btn = gr.Button("💾 Save Data", variant="primary") save_status = gr.Markdown(visible=True) # Connect save button event save_btn.click( fn=manual_save, outputs=save_status ).then( lambda: gr.update(visible=True), None, save_status ) # Create state for all components that need updating with gr.Tabs(): # Must Do Daily Tab with gr.TabItem("Must Do Daily"): create_habit_section() # Today's Focus Tab with gr.TabItem("Today's Focus"): with gr.Column(): gr.Markdown("### Today's Focus") with gr.Row(): # Left column for priorities with gr.Column(scale=2): gr.Markdown("#### Must Do Today") priorities = gr.Dataframe( headers=["Task", "Status"], datatype=["str", "str"], value=current_data["focus"]["priorities"], row_count=5, # Fixed number of rows col_count=(2, "fixed"), # Fixed number of columns interactive=True ) priority_reward = gr.Textbox( label="Reward for Completion", value=current_data["focus"]["priority_reward"], placeholder="Enter reward for completing priorities", lines=2 ) # Right column for later tasks with gr.Column(scale=2): gr.Markdown("#### For Later") later = gr.Dataframe( headers=["Task", "Status"], datatype=["str", "str"], value=current_data["focus"]["later"], row_count=5, # Fixed number of rows col_count=(2, "fixed"), # Fixed number of columns interactive=True ) later_reward = gr.Textbox( label="Reward for Completion", value=current_data["focus"]["later_reward"], placeholder="Enter reward for completing later tasks", lines=2 ) # Event handlers priorities.change( lambda x: update_data("focus.priorities", x), inputs=[priorities] ) priority_reward.change( lambda x: update_data("focus.priority_reward", x), inputs=[priority_reward] ) later.change( lambda x: update_data("focus.later", x), inputs=[later] ) later_reward.change( lambda x: update_data("focus.later_reward", x), inputs=[later_reward] ) # Meals Tab with gr.TabItem("Meals"): with gr.Column(): meal_inputs = {} for meal in ["breakfast", "lunch", "dinner", "snacks"]: meal_inputs[meal] = gr.Textbox( label=meal.capitalize(), value=current_data["meals"][meal], placeholder=f"What did you have for {meal}?" ) meal_inputs[meal].change( lambda x, m=meal: update_data(f"meals.{m}", x), inputs=[meal_inputs[meal]] ) # Life Overview Tab with gr.TabItem("Life Overview"): with gr.Column(): gr.Markdown(""" ### 🌟 Your Life Journey Calculator Time is our most precious resource - not because it's limited, but because it's an opportunity for endless possibilities. Let's explore your unique journey through time and discover the incredible potential that lies ahead. """) # Load saved config user_config = load_user_config() with gr.Row(): birth_date = gr.Textbox( label="Your Birth Date (YYYY-MM-DD)", value=user_config["birth_date"], placeholder="YYYY-MM-DD" ) birth_time = gr.Textbox( label="Your Birth Time", value=user_config["birth_time"], placeholder="HH:MM (24-hour) or HH:MM AM/PM" ) calculate_btn = gr.Button("✨ Calculate Your Life Journey", variant="primary") # Add status message status_msg = gr.Markdown() with gr.Tabs(): with gr.TabItem("Life Stats"): with gr.Row(): current_age_md = gr.Markdown() time_remaining_md = gr.Markdown() with gr.Row(): progress_md = gr.Markdown() milestones_md = gr.Markdown() with gr.TabItem("Visualizations"): with gr.Row(): progress_plot = gr.Plot(label="Life Progress") remaining_plot = gr.Plot(label="Time Until 90") timeline_plot = gr.Plot(label="Life Seasons Timeline") # Update the calculate button click handler def update_stats_and_plots(birth_date_str, birth_time_str): try: # Save the values if save_user_config(birth_date_str, birth_time_str): stats = calculate_age_stats(birth_date_str, birth_time_str) if "Error" in stats: return [ f"⚠️ {stats['Error']}", "", "", "", None, None, None ] figures = create_life_visualizations(stats) current_age, time_remaining, progress, milestones = create_stats_display(stats) return [ current_age, time_remaining, progress, milestones, figures["progress"], figures["remaining"], figures["timeline"] ] else: return ["⚠️ Failed to save configuration", "", "", "", None, None, None] except Exception as e: return [f"⚠️ Error: {str(e)}", "", "", "", None, None, None] calculate_btn.click( fn=update_stats_and_plots, inputs=[birth_date, birth_time], outputs=[ current_age_md, time_remaining_md, progress_md, milestones_md, progress_plot, remaining_plot, timeline_plot ] ) # Progress Tracking Tab with gr.TabItem("Progress Tracking"): with gr.Column(): gr.Markdown("### Daily Metrics") with gr.Row(): # Load data for the selected date selected_data = load_daily_data(date_picker.value) if "tracking_metrics" not in selected_data: selected_data["tracking_metrics"] = { "productivity": 0, "energy": 0, "mood": 0, "sleep_quality": 0, "exercise_intensity": 0 } productivity = gr.Slider(minimum=0, maximum=5, value=selected_data["tracking_metrics"]["productivity"], label="Productivity", step=1) energy = gr.Slider(minimum=0, maximum=5, value=selected_data["tracking_metrics"]["energy"], label="Energy Level", step=1) mood = gr.Slider(minimum=0, maximum=5, value=selected_data["tracking_metrics"]["mood"], label="Mood", step=1) sleep = gr.Slider(minimum=0, maximum=5, value=selected_data["tracking_metrics"]["sleep_quality"], label="Sleep Quality", step=1) exercise = gr.Slider(minimum=0, maximum=5, value=selected_data["tracking_metrics"]["exercise_intensity"], label="Exercise Intensity", step=1) gr.Markdown("### Weekly Overview") week_data = load_week_data() week_dates = get_week_dates() weekly_grid = gr.DataFrame( headers=["Metric"] + [datetime.datetime.strptime(date, "%Y-%m-%d").strftime("%a %d") for date in week_dates], value=[ ["Productivity"] + [week_data[date]["tracking_metrics"]["productivity"] for date in week_dates], ["Energy"] + [week_data[date]["tracking_metrics"]["energy"] for date in week_dates], ["Mood"] + [week_data[date]["tracking_metrics"]["mood"] for date in week_dates], ["Sleep"] + [week_data[date]["tracking_metrics"]["sleep_quality"] for date in week_dates], ["Exercise"] + [week_data[date]["tracking_metrics"]["exercise_intensity"] for date in week_dates] ], interactive=False ) gr.Markdown("### Monthly Stats") month_data = load_month_data() with gr.Row(): prod_label = gr.Label(f"Average Productivity: {calculate_success_rate(month_data, 'productivity')}/10") energy_label = gr.Label(f"Average Energy: {calculate_success_rate(month_data, 'energy')}/10") mood_label = gr.Label(f"Average Mood: {calculate_success_rate(month_data, 'mood')}/10") sleep_label = gr.Label(f"Average Sleep: {calculate_success_rate(month_data, 'sleep_quality')}/10") exercise_label = gr.Label(f"Average Exercise: {calculate_success_rate(month_data, 'exercise_intensity')}/10") # Update tracking metrics and connect to UI elements for slider in [productivity, energy, mood, sleep, exercise]: slider.change( fn=update_metrics, inputs=[productivity, energy, mood, sleep, exercise, date_picker], outputs=[ weekly_grid, prod_label, energy_label, mood_label, sleep_label, exercise_label ] ) # Journaling Tab with gr.TabItem("Daily Journal"): with gr.Column(): gr.Markdown(""" ### 📝 Daily Reflection Journal Take a moment to reflect on your day. These questions will help you process your experiences, learn from them, and plan for tomorrow. Your responses are saved automatically. """) # Create journal entries journal_inputs = {} current_journal = current_data.get("journal", {}) for question in JOURNAL_QUESTIONS: with gr.Group(): gr.Markdown(f"#### {question}") journal_inputs[question] = gr.TextArea( value=current_journal.get(question, ""), placeholder="Write your thoughts here...", lines=3, label="" ) # Add change handler for each text area journal_inputs[question].change( fn=update_journal_entry, inputs=[ gr.State(question), journal_inputs[question] ] ) # Add export button def export_journal(): current_data = load_daily_data() if "journal" in current_data: date = get_date_key() export_text = f"Journal Entry for {date}\n\n" for question in JOURNAL_QUESTIONS: answer = current_data["journal"].get(question, "") if answer: # Only include questions with answers export_text += f"Q: {question}\n" export_text += f"A: {answer}\n\n" return export_text return "No journal entries found for today." with gr.Row(): export_btn = gr.Button("Export Journal Entry") export_text = gr.TextArea( label="Exported Journal", interactive=False, visible=False ) export_btn.click( fn=export_journal, outputs=export_text, show_progress=True ).then( lambda: gr.update(visible=True), None, [export_text] ) # History Tab with gr.TabItem("History"): with gr.Column(): gr.Markdown("### 📚 History Viewer") # Create the history table history_headers = [ "Date", "Productivity", "Energy", "Mood", "Sleep", "Exercise", "Habits", "Journal" ] with gr.Row(): history_table = gr.DataFrame( headers=history_headers, datatype=["str", "number", "number", "number", "number", "number", "str", "number"], value=load_history_data(), interactive=False ) # Create detail view sections with gr.Row(): selected_date = gr.Textbox(label="Selected Date", interactive=False) refresh_btn = gr.Button("🔄 Refresh History") with gr.Tabs() as detail_tabs: with gr.TabItem("Metrics"): metrics_view = gr.DataFrame( headers=["Metric", "Value"], datatype=["str", "number"], interactive=False ) with gr.TabItem("Habits"): gr.Markdown("### Daily Habits Tracking") habits_view = gr.DataFrame( headers=["Habit", "M", "T", "W", "Th", "F", "S", "Su"], datatype=["str", "str", "str", "str", "str", "str", "str", "str"], interactive=False, value=[[habit] + ["×"] * 7 for habit in load_habits()] # Initialize with default values ) with gr.TabItem("Journal"): journal_view = gr.DataFrame( headers=["Question", "Response"], datatype=["str", "str"], interactive=False ) with gr.TabItem("Focus & Meals"): focus_meals_md = gr.Markdown() # Connect event handlers history_table.select( fn=load_day_details, outputs=[ selected_date, metrics_view, habits_view, journal_view, focus_meals_md ] ) refresh_btn.click( fn=load_history_data, outputs=[history_table] ) # Documentation Tab with gr.TabItem("Documentation"): with gr.Column(): gr.Markdown(""" # Potential Made Simple System Documentation ## Overview Welcome to your Life Tracking System, inspired by Rob Dyrdek's "Rhythm of Existence" philosophy. This comprehensive app helps you monitor and optimize various aspects of your life, creating a harmonious balance between work, health, personal life, and sleep. ## Philosophy The "Rhythm of Existence" philosophy, pioneered by entrepreneur Rob Dyrdek, emphasizes the importance of creating intentional, balanced routines that maximize both productivity and life satisfaction. Key principles include: - **Intentional Living**: Every day is an opportunity to make progress towards your goals - **Balance**: Maintaining equilibrium between work, health, relationships, and personal growth - **Consistency**: Building sustainable habits that compound over time - **Measurement**: What gets measured gets improved - **Reflection**: Regular review and adjustment of life patterns ## Features ### 1. Must Do Daily - Track daily habits and routines - Organize tasks into morning, evening, and flexible time slots - Monitor weekly progress and completion rates - Set custom durations for time-based activities ### 2. Today's Focus - Prioritize tasks with "Must Do Today" and "For Later" lists - Set rewards for completing priority tasks - Track task status and progress - Maintain clarity on daily objectives ### 3. Meals - Log daily meals and snacks - Monitor eating patterns - Track nutritional consistency ### 4. Life Overview - Calculate and visualize your life journey - Track progress through different life seasons - Set and monitor life milestones - Understand time allocation and remaining potential ### 5. Progress Tracking - Monitor daily metrics: - Productivity (0-5) - Energy Level (0-5) - Mood (0-5) - Sleep Quality (0-5) - Exercise Intensity (0-5) - View weekly and monthly trends - Track success rates and improvements ### 6. Daily Journal - Reflect on daily experiences - Answer guided questions for deeper insight - Export journal entries for review - Build self-awareness through consistent reflection ### 7. History - Review past data and trends - Analyze patterns in habits and metrics - Track long-term progress - Learn from historical patterns ## Best Practices 1. **Morning Routine** - Start with mindfulness and exercise - Review daily priorities - Set intentions for the day 2. **Throughout the Day** - Update task status regularly - Log meals as they happen - Track metrics while they're fresh 3. **Evening Routine** - Complete journal entries - Review task completion - Plan for tomorrow 4. **Weekly Review** - Analyze progress trends - Adjust habits as needed - Set new goals and rewards ## Tips for Success 1. **Start Small** - Begin with a few key habits - Gradually add more as you build consistency - Focus on progress, not perfection 2. **Be Consistent** - Log data daily - Complete journal entries regularly - Track metrics consistently 3. **Review and Adjust** - Use the History tab to spot patterns - Adjust goals based on progress - Celebrate improvements 4. **Stay Motivated** - Set meaningful rewards - Track progress visually - Share achievements with others ## Technical Notes - Data is saved automatically - Manual save option available - Export functionality for journal entries - Daily refresh at midnight - Ability to view and edit past dates ## Support and Feedback This is a free tool designed to help you optimize your life and create your own perfect rhythm of existence. As you use the app, remember that the goal is progress, not perfection. Every small improvement compounds over time to create significant life changes. For support or to share feedback, please visit the project's repository or contact the development team. Happy tracking! 🌟 """) # Date selection handlers def load_selected_date(date): try: # Validate date format datetime.datetime.strptime(date, "%Y-%m-%d") data = load_daily_data(date) # Update display date display_date = datetime.datetime.strptime(date, "%Y-%m-%d").strftime("%A, %B %d") # Update journal entries if they exist journal_updates = [] for question in JOURNAL_QUESTIONS: journal_updates.append(data.get("journal", {}).get(question, "")) return [display_date] + journal_updates except ValueError: return [date_text.value] + ["" for _ in JOURNAL_QUESTIONS] def return_to_today(): today = get_date_key() date_picker.value = today return [today, datetime.datetime.now().strftime("%A, %B %d")] # Connect date selection events date_picker.change( fn=load_selected_date, inputs=[date_picker], outputs=[date_text] + list(journal_inputs.values()) ) today_btn.click( fn=return_to_today, outputs=[date_picker, date_text] ) # Auto-refresh every minute def auto_refresh(): """Auto refresh function to check and refresh day data""" try: current_data = load_daily_data() current_data = check_and_refresh_day(current_data) save_daily_data(current_data) except Exception as e: print(f"Error in auto refresh: {e}") demo.load(fn=auto_refresh) # No outputs needed demo.queue() # Connect the date selection events date_picker.change( fn=load_selected_date_metrics, inputs=[date_picker], outputs=[productivity, energy, mood, sleep, exercise] ) refresh_dates_btn.click( fn=refresh_dates, outputs=[date_picker] ) demo.launch()