File size: 7,457 Bytes
2a3aa81 5bf38c0 a70a295 e08081f 5bf38c0 0d7fa59 6bebb04 5bf38c0 948cffb 5bf38c0 ce5002a 6bebb04 948cffb 6bebb04 948cffb 5bf38c0 6bebb04 5bf38c0 2a3aa81 6bebb04 ce5002a e08081f 6bebb04 948cffb 2a3aa81 6bebb04 5bf38c0 6bebb04 948cffb a70a295 6bebb04 948cffb 6bebb04 948cffb 2a3aa81 6bebb04 948cffb 6bebb04 ce5002a 6bebb04 ce5002a 6bebb04 ce5002a 5bf38c0 948cffb 5bf38c0 948cffb 6bebb04 948cffb 6bebb04 948cffb 6bebb04 948cffb 6bebb04 948cffb ce5002a 6bebb04 ce5002a 5bf38c0 6bebb04 ce5002a 6bebb04 948cffb 6bebb04 948cffb 6bebb04 5bf38c0 948cffb 5bf38c0 6bebb04 ce5002a 6bebb04 a70a295 5bf38c0 948cffb 5bf38c0 a70a295 948cffb ce5002a e08081f a70a295 6bebb04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# app.py
import os
import requests
import wikipedia
import gradio as gr
import torch
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor
from typing import List
from transformers import (
SeamlessM4TTokenizer,
SeamlessM4TProcessor,
SeamlessM4TForTextToText,
pipeline as hf_pipeline
)
# ββ 1) Model setup ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
MODEL = "facebook/hf-seamless-m4t-medium"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = SeamlessM4TTokenizer.from_pretrained(MODEL, use_fast=False)
processor = SeamlessM4TProcessor.from_pretrained(MODEL, tokenizer=tokenizer)
m4t_model = SeamlessM4TForTextToText.from_pretrained(MODEL).to(device)
if device == "cuda":
m4t_model = m4t_model.half() # FP16 for faster inference on GPU
m4t_model.eval()
def translate_m4t(text: str, src_iso3: str, tgt_iso3: str, auto_detect=False) -> str:
src = None if auto_detect else src_iso3
inputs = processor(text=text, src_lang=src, return_tensors="pt").to(device)
tokens = m4t_model.generate(**inputs, tgt_lang=tgt_iso3)
return processor.decode(tokens[0].tolist(), skip_special_tokens=True)
def translate_m4t_batch(
texts: List[str], src_iso3: str, tgt_iso3: str, auto_detect=False
) -> List[str]:
src = None if auto_detect else src_iso3
inputs = processor(
text=texts, src_lang=src, return_tensors="pt", padding=True
).to(device)
tokens = m4t_model.generate(
**inputs,
tgt_lang=tgt_iso3,
max_new_tokens=60,
num_beams=1
)
return processor.batch_decode(tokens, skip_special_tokens=True)
# ββ 2) NER pipeline (updated for deprecation) ββββββββββββββββββββββββββββββββ
ner = hf_pipeline(
"ner",
model="dslim/bert-base-NER-uncased",
aggregation_strategy="simple"
)
# ββ 3) CACHING helpers ββββββββββββββββββββββββββββββββββββββββββββββββββββββ
@lru_cache(maxsize=256)
def geocode_cache(place: str):
r = requests.get(
"https://nominatim.openstreetmap.org/search",
params={"q": place, "format": "json", "limit": 1},
headers={"User-Agent": "iVoiceContext/1.0"}
).json()
if not r:
return None
return {"lat": float(r[0]["lat"]), "lon": float(r[0]["lon"])}
@lru_cache(maxsize=256)
def fetch_osm_cache(lat: float, lon: float, osm_filter: str, limit: int = 5):
payload = f"""
[out:json][timeout:25];
(
node{osm_filter}(around:1000,{lat},{lon});
way{osm_filter}(around:1000,{lat},{lon});
);
out center {limit};
"""
resp = requests.post(
"https://overpass-api.de/api/interpreter",
data={"data": payload}
)
elems = resp.json().get("elements", [])
return [
{"name": e["tags"]["name"]}
for e in elems
if e.get("tags", {}).get("name")
]
@lru_cache(maxsize=256)
def wiki_summary_cache(name: str) -> str:
try:
return wikipedia.summary(name, sentences=2)
except:
return "No summary available."
# ββ 4) Per-entity worker ββββββββββββββββββββββββββββββββββββββββββββββββββββ
def process_entity(ent) -> dict:
w = ent["word"]
lbl = ent["entity_group"]
if lbl == "LOC":
geo = geocode_cache(w)
if not geo:
return {
"text": w,
"label": lbl,
"type": "location",
"error": "could not geocode"
}
restaurants = fetch_osm_cache(geo["lat"], geo["lon"], '["amenity"="restaurant"]')
attractions = fetch_osm_cache(geo["lat"], geo["lon"], '["tourism"="attraction"]')
return {
"text": w,
"label": lbl,
"type": "location",
"geo": geo,
"restaurants": restaurants,
"attractions": attractions
}
# PERSON / ORG / MISC β Wikipedia
summary = wiki_summary_cache(w)
return {"text": w, "label": lbl, "type": "wiki", "summary": summary}
# ββ 5) Main function ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def get_context(
text: str,
source_lang: str,
output_lang: str,
auto_detect: bool
):
# a) Ensure English for NER
if auto_detect or source_lang != "eng":
en = translate_m4t(text, source_lang, "eng", auto_detect=auto_detect)
else:
en = text
# b) Run NER + dedupe
ner_out = ner(en)
seen = set()
unique_ents = []
for ent in ner_out:
w = ent["word"]
if w in seen:
continue
seen.add(w)
unique_ents.append(ent)
# c) Parallel I/O
entities = []
with ThreadPoolExecutor(max_workers=8) as exe:
futures = [exe.submit(process_entity, ent) for ent in unique_ents]
for fut in futures:
entities.append(fut.result())
# d) Batch-translate non-English fields
if output_lang != "eng":
to_translate = []
translations_info = []
for i, e in enumerate(entities):
if e["type"] == "wiki":
translations_info.append(("summary", i))
to_translate.append(e["summary"])
elif e["type"] == "location":
for j, r in enumerate(e["restaurants"]):
translations_info.append(("restaurant", i, j))
to_translate.append(r["name"])
for j, a in enumerate(e["attractions"]):
translations_info.append(("attraction", i, j))
to_translate.append(a["name"])
translated = translate_m4t_batch(to_translate, "eng", output_lang)
for txt, info in zip(translated, translations_info):
kind = info[0]
if kind == "summary":
_, ei = info
entities[ei]["summary"] = txt
elif kind == "restaurant":
_, ei, ri = info
entities[ei]["restaurants"][ri]["name"] = txt
elif kind == "attraction":
_, ei, ai = info
entities[ei]["attractions"][ai]["name"] = txt
return {"entities": entities}
# ββ 6) Gradio interface βββββββββββββββββββββββββββββββββββββββββββββββββββββ
iface = gr.Interface(
fn=get_context,
inputs=[
gr.Textbox(lines=3, placeholder="Enter textβ¦"),
gr.Textbox(label="Source Language (ISO 639-3)"),
gr.Textbox(label="Target Language (ISO 639-3)"),
gr.Checkbox(label="Auto-detect source language")
],
outputs="json",
title="iVoice Context-Aware",
description="Returns only the detected entities and their related info."
).queue() # β removed unsupported kwargs
if __name__ == "__main__":
iface.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT", 7860)),
share=True
)
|