|
import os |
|
import torch |
|
from transformers import AutoProcessor, SeamlessM4TForTextToText, SeamlessM4TProcessor |
|
import gradio as gr |
|
|
|
MODEL_NAME = "facebook/hf-seamless-m4t-medium" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
processor = SeamlessM4TProcessor.from_pretrained(MODEL_NAME) |
|
model = SeamlessM4TForTextToText.from_pretrained(MODEL_NAME).to(device).eval() |
|
|
|
def translate(text, sourceLang, targetLang, auto_detect): |
|
src = None if auto_detect else sourceLang |
|
inputs = processor(text=text, src_lang=src, return_tensors="pt").to(device) |
|
tokens = model.generate(**inputs, tgt_lang=targetLang) |
|
return processor.decode(tokens[0].tolist(), skip_special_tokens=True) |
|
|
|
iface = gr.Interface( |
|
fn=translate, |
|
inputs=[ |
|
gr.Textbox(label="Text to translate"), |
|
gr.Textbox(label="Source Language (e.g. eng)"), |
|
gr.Textbox(label="Target Language (e.g. fra)"), |
|
gr.Checkbox(label="Auto-detect source") |
|
], |
|
outputs=gr.Textbox(label="Translated Text"), |
|
title="iVoice Translate" |
|
).queue() |
|
|
|
if __name__ == "__main__": |
|
iface.launch(server_name="0.0.0.0", share=True, server_port=int(os.environ.get("PORT", 7860))) |
|
|