import os import torch from transformers import AutoProcessor, SeamlessM4TForTextToText, SeamlessM4TProcessor import gradio as gr MODEL_NAME = "facebook/hf-seamless-m4t-medium" device = "cuda" if torch.cuda.is_available() else "cpu" processor = SeamlessM4TProcessor.from_pretrained(MODEL_NAME) model = SeamlessM4TForTextToText.from_pretrained(MODEL_NAME).to(device).eval() def translate(text, sourceLang, targetLang, auto_detect): src = None if auto_detect else sourceLang inputs = processor(text=text, src_lang=src, return_tensors="pt").to(device) tokens = model.generate(**inputs, tgt_lang=targetLang) return processor.decode(tokens[0].tolist(), skip_special_tokens=True) iface = gr.Interface( fn=translate, inputs=[ gr.Textbox(label="Text to translate"), gr.Textbox(label="Source Language (e.g. eng)"), gr.Textbox(label="Target Language (e.g. fra)"), gr.Checkbox(label="Auto-detect source") ], outputs=gr.Textbox(label="Translated Text"), title="iVoice Translate" ).queue() # <— this turns on the /run/predict REST API if __name__ == "__main__": iface.launch(server_name="0.0.0.0", share=True, server_port=int(os.environ.get("PORT", 7860)))