ShieldX commited on
Commit
83b3e7c
·
1 Parent(s): adc4226

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -0
app.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_chat import message
3
+ import tempfile
4
+ from langchain.document_loaders.csv_loader import CSVLoader
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
+ from langchain.vectorstores import FAISS
7
+ from langchain.llms import CTransformers
8
+ from langchain.chains import ConversationalRetrievalChain
9
+
10
+ DB_FAISS_PATH = 'vectorstore/db_faiss'
11
+
12
+ #Loading the model
13
+ def load_llm():
14
+ # Load the locally downloaded model here
15
+ llm = CTransformers(
16
+ model = "llama-2-7b-chat.ggmlv3.q8_0.bin",
17
+ model_type="llama",
18
+ max_new_tokens = 256,
19
+ temperature = 0.2
20
+ )
21
+ return llm
22
+
23
+ st.title("🦙Llama2🦜CSV🦙")
24
+ st.markdown("<h3 style='color: black;'>Harness the power of LLama2 with Langchain.</h3>", unsafe_allow_html=True)
25
+ st.markdown("<h4 style='color: black;'>Developed by <a href='https://github.com/rohan-shaw'>Rohan Shaw</a> with ❤️</h4>", unsafe_allow_html=True)
26
+ uploaded_file = st.sidebar.file_uploader("CSV file here", type="csv")
27
+
28
+ if uploaded_file :
29
+ with tempfile.NamedTemporaryFile(delete=False) as t:
30
+ t.write(uploaded_file.getvalue())
31
+ temp_path = t.name
32
+
33
+ loader = CSVLoader(file_path=temp_path, encoding="utf-8", csv_args={
34
+ 'delimiter': ','})
35
+ data = loader.load()
36
+ #st.json(data)
37
+ embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
38
+ model_kwargs={'device': 'cpu'})
39
+
40
+ db = FAISS.from_documents(data, embeddings)
41
+ db.save_local(DB_FAISS_PATH)
42
+ llm = load_llm()
43
+ chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
44
+
45
+ def conversational_chat(query):
46
+ result = chain({"question": query, "chat_history": st.session_state['history']})
47
+ st.session_state['history'].append((query, result["answer"]))
48
+ return result["answer"]
49
+
50
+ if 'history' not in st.session_state:
51
+ st.session_state['history'] = []
52
+
53
+ if 'generated' not in st.session_state:
54
+ st.session_state['generated'] = ["Bhai, " + uploaded_file.name + " is file ke bare mein kuch bhi puch le aankh 👀 band karke answer dunga 🤔"]
55
+
56
+ if 'past' not in st.session_state:
57
+ st.session_state['past'] = ["Aur, bol kya hal chal ! 🖖"]
58
+
59
+ #container for the chat history
60
+ response_container = st.container()
61
+ #container for the user's text input
62
+ container = st.container()
63
+
64
+ with container:
65
+ with st.form(key='my_form', clear_on_submit=True):
66
+
67
+ user_input = st.text_input("Query:", placeholder="Apne CSV file ke data ke bare me yaha pe puch (:", key='input')
68
+ submit_button = st.form_submit_button(label='Send')
69
+
70
+ if submit_button and user_input:
71
+ output = conversational_chat(user_input)
72
+
73
+ st.session_state['past'].append(user_input)
74
+ st.session_state['generated'].append(output)
75
+
76
+ if st.session_state['generated']:
77
+ with response_container:
78
+ for i in range(len(st.session_state['generated'])):
79
+ message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="human")
80
+ message(st.session_state["generated"][i], key=str(i), avatar_style="pixel-art-neutral")