|
import spaces |
|
import math |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import safetensors.torch as sf |
|
import db_examples |
|
|
|
from PIL import Image |
|
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline |
|
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler |
|
from diffusers.models.attention_processor import AttnProcessor2_0 |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
from briarmbg import BriaRMBG |
|
from enum import Enum |
|
|
|
|
|
|
|
|
|
|
|
sd15_name = 'stablediffusionapi/realistic-vision-v51' |
|
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer") |
|
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder") |
|
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae") |
|
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet") |
|
rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4") |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding) |
|
new_conv_in.weight.zero_() |
|
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight) |
|
new_conv_in.bias = unet.conv_in.bias |
|
unet.conv_in = new_conv_in |
|
|
|
unet_original_forward = unet.forward |
|
|
|
|
|
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs): |
|
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample) |
|
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0) |
|
new_sample = torch.cat([sample, c_concat], dim=1) |
|
kwargs['cross_attention_kwargs'] = {} |
|
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs) |
|
|
|
|
|
unet.forward = hooked_unet_forward |
|
|
|
|
|
|
|
model_path = './models/iclight_sd15_fc.safetensors' |
|
|
|
sd_offset = sf.load_file(model_path) |
|
sd_origin = unet.state_dict() |
|
keys = sd_origin.keys() |
|
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()} |
|
unet.load_state_dict(sd_merged, strict=True) |
|
del sd_offset, sd_origin, sd_merged, keys |
|
|
|
|
|
|
|
device = torch.device('cuda') |
|
text_encoder = text_encoder.to(device=device, dtype=torch.float16) |
|
vae = vae.to(device=device, dtype=torch.bfloat16) |
|
unet = unet.to(device=device, dtype=torch.float16) |
|
rmbg = rmbg.to(device=device, dtype=torch.float32) |
|
|
|
|
|
|
|
unet.set_attn_processor(AttnProcessor2_0()) |
|
vae.set_attn_processor(AttnProcessor2_0()) |
|
|
|
|
|
|
|
ddim_scheduler = DDIMScheduler( |
|
num_train_timesteps=1000, |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
steps_offset=1, |
|
) |
|
|
|
euler_a_scheduler = EulerAncestralDiscreteScheduler( |
|
num_train_timesteps=1000, |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
steps_offset=1 |
|
) |
|
|
|
dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler( |
|
num_train_timesteps=1000, |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
algorithm_type="sde-dpmsolver++", |
|
use_karras_sigmas=True, |
|
steps_offset=1 |
|
) |
|
|
|
|
|
|
|
t2i_pipe = StableDiffusionPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=dpmpp_2m_sde_karras_scheduler, |
|
safety_checker=None, |
|
requires_safety_checker=False, |
|
feature_extractor=None, |
|
image_encoder=None |
|
) |
|
|
|
i2i_pipe = StableDiffusionImg2ImgPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=dpmpp_2m_sde_karras_scheduler, |
|
safety_checker=None, |
|
requires_safety_checker=False, |
|
feature_extractor=None, |
|
image_encoder=None |
|
) |
|
|
|
|
|
@torch.inference_mode() |
|
def encode_prompt_inner(txt: str): |
|
max_length = tokenizer.model_max_length |
|
chunk_length = tokenizer.model_max_length - 2 |
|
id_start = tokenizer.bos_token_id |
|
id_end = tokenizer.eos_token_id |
|
id_pad = id_end |
|
|
|
def pad(x, p, i): |
|
return x[:i] if len(x) >= i else x + [p] * (i - len(x)) |
|
|
|
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"] |
|
chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)] |
|
chunks = [pad(ck, id_pad, max_length) for ck in chunks] |
|
|
|
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64) |
|
conds = text_encoder(token_ids).last_hidden_state |
|
|
|
return conds |
|
|
|
|
|
@torch.inference_mode() |
|
def encode_prompt_pair(positive_prompt, negative_prompt): |
|
c = encode_prompt_inner(positive_prompt) |
|
uc = encode_prompt_inner(negative_prompt) |
|
|
|
c_len = float(len(c)) |
|
uc_len = float(len(uc)) |
|
max_count = max(c_len, uc_len) |
|
c_repeat = int(math.ceil(max_count / c_len)) |
|
uc_repeat = int(math.ceil(max_count / uc_len)) |
|
max_chunk = max(len(c), len(uc)) |
|
|
|
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk] |
|
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk] |
|
|
|
c = torch.cat([p[None, ...] for p in c], dim=1) |
|
uc = torch.cat([p[None, ...] for p in uc], dim=1) |
|
|
|
return c, uc |
|
|
|
|
|
@torch.inference_mode() |
|
def pytorch2numpy(imgs, quant=True): |
|
results = [] |
|
for x in imgs: |
|
y = x.movedim(0, -1) |
|
|
|
if quant: |
|
y = y * 127.5 + 127.5 |
|
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) |
|
else: |
|
y = y * 0.5 + 0.5 |
|
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32) |
|
|
|
results.append(y) |
|
return results |
|
|
|
|
|
@torch.inference_mode() |
|
def numpy2pytorch(imgs): |
|
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 |
|
h = h.movedim(-1, 1) |
|
return h |
|
|
|
|
|
def resize_and_center_crop(image, target_width, target_height): |
|
pil_image = Image.fromarray(image) |
|
original_width, original_height = pil_image.size |
|
scale_factor = max(target_width / original_width, target_height / original_height) |
|
resized_width = int(round(original_width * scale_factor)) |
|
resized_height = int(round(original_height * scale_factor)) |
|
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS) |
|
left = (resized_width - target_width) / 2 |
|
top = (resized_height - target_height) / 2 |
|
right = (resized_width + target_width) / 2 |
|
bottom = (resized_height + target_height) / 2 |
|
cropped_image = resized_image.crop((left, top, right, bottom)) |
|
return np.array(cropped_image) |
|
|
|
|
|
def resize_without_crop(image, target_width, target_height): |
|
pil_image = Image.fromarray(image) |
|
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) |
|
return np.array(resized_image) |
|
|
|
|
|
@torch.inference_mode() |
|
def run_rmbg(img, sigma=0.0): |
|
H, W, C = img.shape |
|
assert C == 3 |
|
k = (256.0 / float(H * W)) ** 0.5 |
|
feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k))) |
|
feed = numpy2pytorch([feed]).to(device=device, dtype=torch.float32) |
|
alpha = rmbg(feed)[0][0] |
|
alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear") |
|
alpha = alpha.movedim(1, -1)[0] |
|
alpha = alpha.detach().float().cpu().numpy().clip(0, 1) |
|
result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha |
|
return result.clip(0, 255).astype(np.uint8), alpha |
|
|
|
|
|
@torch.inference_mode() |
|
def process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source): |
|
bg_source = BGSource(bg_source) |
|
input_bg = None |
|
|
|
if bg_source == BGSource.NONE: |
|
pass |
|
elif bg_source == BGSource.LEFT: |
|
gradient = np.linspace(255, 0, image_width) |
|
image = np.tile(gradient, (image_height, 1)) |
|
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) |
|
elif bg_source == BGSource.RIGHT: |
|
gradient = np.linspace(0, 255, image_width) |
|
image = np.tile(gradient, (image_height, 1)) |
|
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) |
|
elif bg_source == BGSource.TOP: |
|
gradient = np.linspace(255, 0, image_height)[:, None] |
|
image = np.tile(gradient, (1, image_width)) |
|
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) |
|
elif bg_source == BGSource.BOTTOM: |
|
gradient = np.linspace(0, 255, image_height)[:, None] |
|
image = np.tile(gradient, (1, image_width)) |
|
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) |
|
else: |
|
raise 'Wrong initial latent!' |
|
|
|
rng = torch.Generator(device=device).manual_seed(int(seed)) |
|
|
|
fg = resize_and_center_crop(input_fg, image_width, image_height) |
|
|
|
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype) |
|
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor |
|
|
|
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt) |
|
|
|
if input_bg is None: |
|
latents = t2i_pipe( |
|
prompt_embeds=conds, |
|
negative_prompt_embeds=unconds, |
|
width=image_width, |
|
height=image_height, |
|
num_inference_steps=steps, |
|
num_images_per_prompt=num_samples, |
|
generator=rng, |
|
output_type='latent', |
|
guidance_scale=cfg, |
|
cross_attention_kwargs={'concat_conds': concat_conds}, |
|
).images.to(vae.dtype) / vae.config.scaling_factor |
|
else: |
|
bg = resize_and_center_crop(input_bg, image_width, image_height) |
|
bg_latent = numpy2pytorch([bg]).to(device=vae.device, dtype=vae.dtype) |
|
bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor |
|
latents = i2i_pipe( |
|
image=bg_latent, |
|
strength=lowres_denoise, |
|
prompt_embeds=conds, |
|
negative_prompt_embeds=unconds, |
|
width=image_width, |
|
height=image_height, |
|
num_inference_steps=int(round(steps / lowres_denoise)), |
|
num_images_per_prompt=num_samples, |
|
generator=rng, |
|
output_type='latent', |
|
guidance_scale=cfg, |
|
cross_attention_kwargs={'concat_conds': concat_conds}, |
|
).images.to(vae.dtype) / vae.config.scaling_factor |
|
|
|
pixels = vae.decode(latents).sample |
|
pixels = pytorch2numpy(pixels) |
|
pixels = [resize_without_crop( |
|
image=p, |
|
target_width=int(round(image_width * highres_scale / 64.0) * 64), |
|
target_height=int(round(image_height * highres_scale / 64.0) * 64)) |
|
for p in pixels] |
|
|
|
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype) |
|
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor |
|
latents = latents.to(device=unet.device, dtype=unet.dtype) |
|
|
|
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8 |
|
|
|
fg = resize_and_center_crop(input_fg, image_width, image_height) |
|
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype) |
|
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor |
|
|
|
latents = i2i_pipe( |
|
image=latents, |
|
strength=highres_denoise, |
|
prompt_embeds=conds, |
|
negative_prompt_embeds=unconds, |
|
width=image_width, |
|
height=image_height, |
|
num_inference_steps=int(round(steps / highres_denoise)), |
|
num_images_per_prompt=num_samples, |
|
generator=rng, |
|
output_type='latent', |
|
guidance_scale=cfg, |
|
cross_attention_kwargs={'concat_conds': concat_conds}, |
|
).images.to(vae.dtype) / vae.config.scaling_factor |
|
|
|
pixels = vae.decode(latents).sample |
|
|
|
return pytorch2numpy(pixels) |
|
|
|
|
|
@spaces.GPU |
|
@torch.inference_mode() |
|
def process_relight(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source): |
|
input_fg, matting = run_rmbg(input_fg) |
|
results = process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source) |
|
return input_fg, results |
|
|
|
|
|
quick_prompts = [ |
|
'sunshine from window', |
|
'neon light, city', |
|
'sunset over sea', |
|
'golden time', |
|
'sci-fi RGB glowing, cyberpunk', |
|
'natural lighting', |
|
'warm atmosphere, at home, bedroom', |
|
'magic lit', |
|
'evil, gothic, Yharnam', |
|
'light and shadow', |
|
'shadow from window', |
|
'soft studio lighting', |
|
'home atmosphere, cozy bedroom illumination', |
|
'neon, Wong Kar-wai, warm' |
|
] |
|
quick_prompts = [[x] for x in quick_prompts] |
|
|
|
|
|
quick_subjects = [ |
|
'beautiful woman, detailed face', |
|
'handsome man, detailed face', |
|
] |
|
quick_subjects = [[x] for x in quick_subjects] |
|
|
|
|
|
class BGSource(Enum): |
|
NONE = "None" |
|
LEFT = "Left Light" |
|
RIGHT = "Right Light" |
|
TOP = "Top Light" |
|
BOTTOM = "Bottom Light" |
|
|
|
|
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
gr.Markdown("## IC-Light (Relighting with Foreground Condition)") |
|
with gr.Row(): |
|
gr.Markdown("See also https://github.com/lllyasviel/IC-Light for background-conditioned model and normal estimation") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
input_fg = gr.Image(sources='upload', type="numpy", label="Image", height=480) |
|
output_bg = gr.Image(type="numpy", label="Preprocessed Foreground", height=480) |
|
prompt = gr.Textbox(label="Prompt") |
|
bg_source = gr.Radio(choices=[e.value for e in BGSource], |
|
value=BGSource.NONE.value, |
|
label="Lighting Preference (Initial Latent)", type='value') |
|
example_quick_subjects = gr.Dataset(samples=quick_subjects, label='Subject Quick List', samples_per_page=1000, components=[prompt]) |
|
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Lighting Quick List', samples_per_page=1000, components=[prompt]) |
|
relight_button = gr.Button(value="Relight") |
|
|
|
with gr.Group(): |
|
with gr.Row(): |
|
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) |
|
seed = gr.Number(label="Seed", value=12345, precision=0) |
|
|
|
with gr.Row(): |
|
image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64) |
|
image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64) |
|
|
|
with gr.Accordion("Advanced options", open=False): |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1) |
|
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=2, step=0.01) |
|
lowres_denoise = gr.Slider(label="Lowres Denoise (for initial latent)", minimum=0.1, maximum=1.0, value=0.9, step=0.01) |
|
highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=3.0, value=1.5, step=0.01) |
|
highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=1.0, value=0.5, step=0.01) |
|
a_prompt = gr.Textbox(label="Added Prompt", value='best quality') |
|
n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality') |
|
with gr.Column(): |
|
result_gallery = gr.Gallery(height=832, object_fit='contain', label='Outputs') |
|
with gr.Row(): |
|
dummy_image_for_outputs = gr.Image(visible=False, label='Result') |
|
gr.Examples( |
|
fn=lambda *args: [[args[-1]], "imgs/dummy.png"], |
|
examples=db_examples.foreground_conditioned_examples, |
|
inputs=[ |
|
input_fg, prompt, bg_source, image_width, image_height, seed, dummy_image_for_outputs |
|
], |
|
outputs=[result_gallery, output_bg], |
|
run_on_click=True, examples_per_page=1024 |
|
) |
|
ips = [input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source] |
|
relight_button.click(fn=process_relight, inputs=ips, outputs=[output_bg, result_gallery]) |
|
example_quick_prompts.click(lambda x, y: ', '.join(y.split(', ')[:2] + [x[0]]), inputs=[example_quick_prompts, prompt], outputs=prompt, show_progress=False, queue=False) |
|
example_quick_subjects.click(lambda x: x[0], inputs=example_quick_subjects, outputs=prompt, show_progress=False, queue=False) |
|
|
|
|
|
block.launch(server_name='0.0.0.0') |
|
|